The Src homology 2 (SH2) and Src homology 3 (SH3) domains of Src family kinases are involved in substrate recognition in vivo. Many cellular substrates of Src kinases contain a large number of potential phosphorylation sites, and the SH2 and SH3 domains of Src are known to be required for phosphorylation of these substrates. In principle, Src could phosphorylate these substrates by either a processive mechanism, in which the enzyme remains bound to the peptide substrate during multiple phosphorylation events, or a nonprocessive (distributive) mechanism, where each phosphorylation requires a separate binding interaction between enzyme and substrate. Here we use a synthetic peptide system to demonstrate that Hck, a Src family kinase, can phosphorylate substrates containing an SH2 domain ligand by a processive mechanism. Hck catalyzes the phosphorylation of these sites in a defined order. Furthermore, we show that addition of an SH3 domain to a peptide can enhance its phosphorylation both by activating Hck and by increasing the affinity of the substrate. On the basis of our observations on the role of the SH2 and SH3 domains in substrate recognition, we present a model for substrate targeting in vivo.
Using photoaffinity labeling, we have identified a region in mammalian farnesyl-protein transferase (FPTase) involved in substrate recognition. The photolabel used (Compound 1) is a peptide containing the photoactive amino acid p-benzoylphenylalanine (Bpa). Upon exposure to UV light. Compound 1 inhibits FPTase activity in a time- and concentration-dependent manner. Photoinhibition of FPTase activity by Compound 1 is prevented by adding H-Ras to the reaction mixture, indicating that labeling is targeted to the enzyme active site. We used peptide mapping by HPLC, Edman sequencing, and matrix-assisted time-of-flight (MALDI-TOF) mass spectrometry to identify the site of interaction with radiolabeled Compound 1. These experiments indicate that a specific region of the alpha subunit of the enzyme, Asp110-Arg112, is involved in substrate binding and suggest that Glu111 is likely to be the residue covalently modified by the photoaffinity label. Sequence alignments between yeast and mammalian FPTases reveal that Glu111 is conserved. The implications of this finding are discussed in light of previous mutagenesis studies on FPTase.
Studies utilizing NMR spectroscopy have shown that adenosine cyclic 3',5'-phosphate dependent protein kinase (A-kinase) probably binds Leu-Arg-Arg-Ala-Ser-Leu-Gly (peptide 1) in one of two extended coil conformations (A or B). The relative reactivities of a series of N-methylated peptides based on the structure of peptide 1 might, therefore, be related to how well each can assume the A or B conformation. From estimates of the magnitude of steric interactions that would be induced by N-methylation of an amide in peptide 1 that is locked in either conformation, the ability of each peptide to form that conformation was predicted. The ability of A-kinase to catalyze phosphorylation of the N-methylated peptides correlated well with the ability of each peptide to form conformation A, but not conformation B. In accord with these findings, the reactivity of an unreactive N-methylated peptide was partially restored by a second change, which allowed the peptide to assume conformation A. These results suggest that, when bound in the enzymatic active site, peptide 1 has a conformation that resembles structure A much more closely than structure B.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.