The PSI-C subunit of photosystem I shows similarity to soluble 2[4Fe-4S] ferredoxins. Alignment analysis clearly shows that PSI-C contains an 8-residue internal loop and a 15-residue C-terminal extension that are absent in the ferredoxins. The remaining residues in PSI-C are likely to be folded in a way similar to the soluble 2[4Fe-4S] ferredoxins. Two modified PSI-C subunits lacking either the 8-residue loop or 10 residues of the C terminus were expressed in Escherichia coli and used to reconstitute a barley P700-F X core prepared to specifically lack PSI-C, PSI-D, and PSI-E. As shown by EPR spectroscopy, the modified proteins carry two [4Fe-4S] clusters with characteristics similar to those of native PSI-C. Western blot analysis of the reconstituted photosystem I complexes showed that the modified PSI-C proteins bind to the P700-F X core. Flash photolysis revealed that in photosystem I complexes reconstituted in the presence of PSI-D with the C-terminally deleted PSI-C, the F A /F B back-reaction was less efficiently restored than with wild-type PSI-C. The loop-deleted PSI-C was even less efficient. We attribute these differences to altered binding properties of the modified proteins. Comparison of reconstitutions performed in the presence and absence of PSI-D shows that the loop-deleted PSI-C is unable to bind without PSI-D, whereas the C-terminally deleted PSI-C binds only weakly with PSI-D. These results imply that the internal loop of PSI-C interacts with the PSI-A/B heterodimer and that the C terminus of PSI-C interacts with PSI-D.
The Src homology 2 (SH2) and Src homology 3 (SH3) domains of Src family kinases are involved in substrate recognition in vivo. Many cellular substrates of Src kinases contain a large number of potential phosphorylation sites, and the SH2 and SH3 domains of Src are known to be required for phosphorylation of these substrates. In principle, Src could phosphorylate these substrates by either a processive mechanism, in which the enzyme remains bound to the peptide substrate during multiple phosphorylation events, or a nonprocessive (distributive) mechanism, where each phosphorylation requires a separate binding interaction between enzyme and substrate. Here we use a synthetic peptide system to demonstrate that Hck, a Src family kinase, can phosphorylate substrates containing an SH2 domain ligand by a processive mechanism. Hck catalyzes the phosphorylation of these sites in a defined order. Furthermore, we show that addition of an SH3 domain to a peptide can enhance its phosphorylation both by activating Hck and by increasing the affinity of the substrate. On the basis of our observations on the role of the SH2 and SH3 domains in substrate recognition, we present a model for substrate targeting in vivo.
A full-length cDNA clone encoding the PSI-F subunit of barley photosystem I has been isolated and sequenced. The open reading frame encodes a precursor polypeptide with a deduced molecular mass of 24837 Da. The barley PSI-F precursor contains a bipartite presequence with characteristics similar to the presequences of proteins destined to the thylakoid lumen. In vitro import studies demonstrate that an in vitro synthesized precursor is transported across the chloroplast envelope and directed to the thylakoid membrane, where it accumulates in a protease-resistant form. Incubation of the precursor with a chloroplast stromal extract results in processing to a form intermediate in size between the precursor and mature forms. Hydrophobicity analysis of the barley PSI-F protein reveals a hydrophobic region predicted to be a membrane spanning alpha-helix. The hydrophobic nature of PSI-F combined with a bipartite presequence is unusual. We postulate that the second domain in the bipartite presequence of the PSI-F precursor proteins is required to ensure the proper orientation of PSI-F in the thylakoid membrane. The expression of the PsaF gene is light-induced similar to other barley photosystem I genes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.