Here we analyse genetic variation, population structure and diversity among 3,010 diverse Asian cultivated rice (Oryza sativa L.) genomes from the 3,000 Rice Genomes Project. Our results are consistent with the five major groups previously recognized, but also suggest several unreported subpopulations that correlate with geographic location. We identified 29 million single nucleotide polymorphisms, 2.4 million small indels and over 90,000 structural variations that contribute to within-and between-population variation. Using pan-genome analyses, we identified more than 10,000 novel full-length protein-coding genes and a high number of presence-absence variations. The complex patterns of introgression observed in domestication genes are consistent with multiple independent rice domestication events. The public availability of data from the 3,000 Rice Genomes Project provides a resource for rice genomics research and breeding.Asian cultivated rice is grown worldwide and comprises the staple food for half of the global population. It is envisaged that by the year 2035 1 feeding this growing population will necessitate that an additional 112 million metric tons of rice be produced on a smaller area of land, using less water and under more fluctuating climatic conditions, which will require that future rice cultivars be higher yielding and resilient to multiple abiotic and biotic stresses. The foundation of the continued improvement of rice cultivars is the rich genetic diversity within domesticated populations and wild relatives [2][3][4] . For over 2,000 years, two major types of O. sativa-O. sativa Xian group (here referred to as Xian/Indica (XI) and also known as , Hsien or Indica) and O. sativa Geng Group (here referred to as Geng/Japonica (GJ) and also known as , Keng or Japonica)-have historically been recognized [5][6][7] . Varied degrees of post-reproductive barriers exist between XI and GJ rice accessions 8 ; this differentiation between XI and GJ rice types and the presence of different varietal groups are well-documented at isozyme and DNA levels 6,9 . Two other distinct groups have also been recognized using molecular markers 10 ; one of these encompasses the Aus, Boro and Rayada ecotypes from Bangladesh and India (which we term the circum-Aus group (cA)) and the other comprises the famous Basmati and Sadri aromatic varieties (which we term the circum-Basmati group (cB)).Approximately 780,000 rice accessions are available in gene banks worldwide 11 . To enable the more efficient use of these accessions in future rice improvement, the Chinese Academy of Agricultural Sciences, BGI-Shenzhen and International Rice Research Institute sequenced over 3,000 rice genomes (3K-RG) as part of the 3,000 Rice Genomes Project 12. Here we present analyses of genetic variation in the 3K-RG that focus on important aspects of O. sativa diversity, single nucleotide polymorphisms (SNPs) and structural variation (deletions, duplications, inversions and translocations). We also construct a species pangenome consisting of 'core...
The tree of life of fishes is in a state of flux because we still lack a comprehensive phylogeny that includes all major groups. The situation is most critical for a large clade of spiny-finned fishes, traditionally referred to as percomorphs, whose uncertain relationships have plagued ichthyologists for over a century. Most of what we know about the higher-level relationships among fish lineages has been based on morphology, but rapid influx of molecular studies is changing many established systematic concepts. We report a comprehensive molecular phylogeny for bony fishes that includes representatives of all major lineages. DNA sequence data for 21 molecular markers (one mitochondrial and 20 nuclear genes) were collected for 1410 bony fish taxa, plus four tetrapod species and two chondrichthyan outgroups (total 1416 terminals). Bony fish diversity is represented by 1093 genera, 369 families, and all traditionally recognized orders. The maximum likelihood tree provides unprecedented resolution and high bootstrap support for most backbone nodes, defining for the first time a global phylogeny of fishes. The general structure of the tree is in agreement with expectations from previous morphological and molecular studies, but significant new clades arise. Most interestingly, the high degree of uncertainty among percomorphs is now resolved into nine well-supported supraordinal groups. The order Perciformes, considered by many a polyphyletic taxonomic waste basket, is defined for the first time as a monophyletic group in the global phylogeny. A new classification that reflects our phylogenetic hypothesis is proposed to facilitate communication about the newly found structure of the tree of life of fishes. Finally, the molecular phylogeny is calibrated using 60 fossil constraints to produce a comprehensive time tree. The new time-calibrated phylogeny will provide the basis for and stimulate new comparative studies to better understand the evolution of the amazing diversity of fishes.
We describe updates to the Rice SNP-Seek Database since its first release. We ran a new SNP-calling pipeline followed by filtering that resulted in complete, base, filtered and core SNP datasets. Besides the Nipponbare reference genome, the pipeline was run on genome assemblies of IR 64, 93-11, DJ 123 and Kasalath. New genotype query and display features are added for reference assemblies, SNP datasets and indels. JBrowse now displays BAM, VCF and other annotation tracks, the additional genome assemblies and an embedded VISTA genome comparison viewer. Middleware is redesigned for improved performance by using a hybrid of HDF5 and RDMS for genotype storage. Query modules for genotypes, varieties and genes are improved to handle various constraints. An integrated list manager allows the user to pass query parameters for further analysis. The SNP Annotator adds traits, ontology terms, effects and interactions to markers in a list. Web-service calls were implemented to access most data. These features enable seamless querying of SNP-Seek across various biological entities, a step toward semi-automated gene-trait association discovery. URL: http://snp-seek.irri.org.
Percomorphs are a large and diverse group of spiny-finned fishes that have come to be known as the "bush at the top" due to their persistent lack of phylogenetic resolution. Recently, the broader Euteleost Tree of Life project (EToL) inferred a well-supported phylogenetic hypothesis that groups the diversity of percomorphs into nine well-supported series (supraordinal groups): Ophidiaria, Batrachoidaria, Gobiaria, Syngnatharia, Pelagiaria, Anabantaria, Carangaria, Ovalentaria, and Eupercaria. The EToL also provided, for the first time, a monophyletic definition of Perciformes - the largest order of vertebrates. Despite significant progress made in accommodating the diversity of percomorph taxa into major clades, some 62 families (most previously placed in "Perciformes", as traditionally defined) were not examined by the EToL. Here, we provide evidence for the phylogenetic affinities of 10 of those 62 families, seven of which have largely remained enigmatic. This expanded taxonomic sampling also provides further support for the nine EToL supraordinal series. We examined sequences from 21 genes previously used by the EToL and added two fast-evolving mitochondrial markers in an attempt to increase resolution within the rapid percomorph radiations. We restricted the taxonomic sampling to 1229 percomorph species, including expanded sampling from recent studies. Results of maximum likelihood analysis revealed that bathyclupeids (Bathyclupeidae), galjoen fishes (Dichistiidae), kelpfishes (Chironemidae), marblefishes (Aplodactylidae), trumpeters (Latridae), barbeled grunters (Hapalogenyidae), slopefishes (Symphysanodontidae), and picarel porgies (formerly Centracanthidae) are members of the series Eupercaria ("new bush at the top"). The picarel porgies and porgies (Sparidae) are now placed in the same family (Sparidae). Our analyses suggest a close affinity between the orders Spariformes (including Lethrinidae, Nemipteridae and Sparidae) and Lobotiformes (including the tripletails or Lobotidae, the barbeled grunters, and tigerperches or Datnioididae), albeit support for this group is low. None of the newly examined families belong in the order Perciformes, as recently defined. Finally, we confirm results from other recent studies that place the Australasian salmons (Arripidae) within Pelagiaria, and the false trevallies (Lactariidae) close to flatfishes, jacks, and trevallies, within Carangaria.
Soil drying causes leaf rolling in rice, but the relationship between leaf rolling and drought tolerance has historically confounded selection of drought‐tolerant genotypes. In this study on tropical japonica and aus diversity panels (170–220 genotypes), the degree of leaf rolling under drought was more affected by leaf morphology than by stomatal conductance, leaf water status, or maintenance of shoot biomass and grain yield. A range of canopy temperature and leaf rolling (measured as change in normalized difference vegetation index [ΔNDVI]) combinations were observed among aus genotypes, indicating that some genotypes continued transpiration while rolled. Association mapping indicated colocation of genomic regions for leaf rolling score and ΔNDVI under drought with previously reported leaf rolling genes and gene networks related to leaf anatomy. The relatively subtle variation across these large diversity panels may explain the lack of agreement of this study with earlier reports that used small numbers of genotypes that were highly divergent in hydraulic traits driving leaf rolling differences. This study highlights the large range of physiological responses to drought among rice genotypes and emphasizes that drought response processes should be understood in detail before incorporating them into a varietal selection programme.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.