Background Per- and polyfluoroalkyl substances (PFAS) are considered chemicals of emerging concern, in part due to their environmental and biological persistence and the potential for widespread human exposure. In 2007, a PFAS manufacturer near Decatur, Alabama notified the United States Environmental Protection Agency (EPA) it had discharged PFAS into a wastewater treatment plant, resulting in environmental contamination and potential exposures to the local community. Objectives To characterize PFAS exposure over time, the Agency for Toxic Substances and Disease Registry (ATSDR) collected blood and urine samples from local residents. Methods Eight PFAS were measured in serum in 2010 (n =153). Eleven PFAS were measured in serum, and five PFAS were measured in urine (n =45) from some of the same residents in 2016. Serum concentrations were compared to nationally representative data and change in serum concentration over time was evaluated. Biological half-lives were estimated for perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), and perfluorohexane sulfonic acid (PFHxS) using a one-compartment pharmacokinetic model. Results In 2010 and 2016, geometric mean PFOA and PFOS serum concentrations were elevated in participants compared to the general U.S. population. In 2016, the geometric mean PFHxS serum concentration was elevated compared to the general U.S. population. Geometric mean serum concentrations of PFOA, PFOS, and perfluorononanoic acid (PFNA) were significantly (p≤0.0001) lower (49%, 53%, and 58%, respectively) in 2016 compared to 2010. Half-lives for PFOA, PFOS, and PFHxS were estimated to be 3.9, 3.3, and 15.5 years, respectively. Concentrations of PFOA in serum and urine were highly correlated (r =0.75) in males. Conclusions Serum concentrations of some PFAS are decreasing in this residentially exposed community, but remain elevated compared to the U.S. general population.
This article provides a review of the routine methods currently utilized for total naphthenic acid analyses. There is a growing need to develop chemical methods that can selectively distinguish compounds found within industrially derived oil sands process affected waters (OSPW) from those derived from the natural weathering of oil sands deposits. Attention is thus given to the characterization of other OSPW components such as oil sands polar organic compounds, PAHs, and heavy metals along with characterization of chemical additives such as polyacrylamide polymers and trace levels of boron species. Environmental samples discussed cover the following matrices: OSPW containments, on-lease interceptor well systems, on- and off-lease groundwater, and river and lake surface waters. There are diverse ranges of methods available for analyses of total naphthenic acids. However, there is a need for inter-laboratory studies to compare their accuracy and precision for routine analyses. Recent advances in high- and medium-resolution mass spectrometry, concomitant with comprehensive mass spectrometry techniques following multi-dimensional chromatography or ion-mobility separations, have allowed for the speciation of monocarboxylic naphthenic acids along with a wide range of other species including humics. The distributions of oil sands polar organic compounds, particularly the sulphur containing species (i.e., OxS and OxS2) may allow for distinguishing sources of OSPW. The ratios of oxygen- (i.e., Ox) and nitrogen-containing species (i.e., NOx, and N2Ox) are useful for differentiating organic components derived from OSPW from natural components found within receiving waters. Synchronous fluorescence spectroscopy also provides a powerful screening technique capable of quickly detecting the presence of aromatic organic acids contained within oil sands naphthenic acid mixtures. Synchronous fluorescence spectroscopy provides diagnostic profiles for OSPW and potentially impacted groundwater that can be compared against reference groundwater and surface water samples. Novel applications of X-ray absorption near edge spectroscopy (XANES) are emerging for speciation of sulphur-containing species (both organic and inorganic components) as well as industrially derived boron-containing species. There is strong potential for an environmental forensics application of XANES for chemical fingerprinting of weathered sulphur-containing species and industrial additives in OSPW.
Investigations into the biodegradation potential of perfluorooctane sulfonate (PFOS)-precursor candidates have focused on low molecular weight substances (e.g., N-ethyl perfluorooctane sulfonamido ethanol (EtFOSE)) in wastewater treatment plant sludge. Few data are available on PFOS-precursor biodegradation in other environmental compartments, and nothing is known about the stability of high-molecular-weight perfluorooctane sulfonamide-based substances such as the EtFOSE-based phosphate diester (SAmPAP diester) in any environmental compartment. In the present work, the biodegradation potential of SAmPAP diester and EtFOSE by bacteria in marine sediments was evaluated over 120 days at 4 and 25 °C. At both temperatures, EtFOSE was transformed to a suite of products, including N-ethyl perfluorooctane sulfonamidoacetate, perfluorooctane sulfonamidoacetate, N-ethyl perfluorooctane sulfonamide, perfluorooctane sulfonamide, and perfluorooctane sulfonate. Transformation was significantly more rapid at 25 °C (t(1/2) = 44 ± 3.4 days; error represents standard error of the mean (SEM)) compared to 4 °C (t(1/2) = 160 ± 17 days), but much longer than previous biodegradation studies involving EtFOSE in sludge (t(1/2) ∼0.7-4.2 days). In contrast, SAmPAP diester was highly recalcitrant to microbial degradation, with negligible loss and/or associated product formation observed after 120 days at both temperatures, and an estimated half-life of >380 days at 25 °C (estimated using the lower bounds 95% confidence interval of the slope). We hypothesize that the hydrophobicity of SAmPAP diester reduces its bioavailability, thus limiting biotransformation by bacteria in sediments. The lengthy biodegradation half-life of EtFOSE and recalcitrant nature of SAmPAP diester in part explains the elevated concentrations of PFOS-precursors observed in urban marine sediments from Canada, Japan, and the U.S, over a decade after phase-out of their production and commercial application in these countries.
In this study, we measured the effects of sample type and storage temperature on the stability of 29 per- and polyfluorinated alkyl substances (PFAS) in water. Spiked bottled water, surface water, and two types of effluent samples were stored in HDPE containers at +20, 4, and −20 °C over a period of up to 180 days. The analytes studied included C4 through C14 perfluorinated carboxylates (PFCAs); C4 through C10 and C12 perfluorinated sulfonates (PFSAs); 4:2, 6:2, and 8:2 fluorotelomer sulfonates (FTS); three perfluorooctane sulfonamides (PFOSA, N-MeFOSA, and N-EtFOSA); two perfluorooctane sulfonamide ethanols (N-MeFOSE and N-EtFOSE); and two perfluorooctane sulfonamide acetic acids (N-MeFOSAA and EtFOSAA). Overall, 10 analytes, PFOA, PFNA, 8:2 FTS, PFOSA, N-MeFOSA, NEtFOSA, N-MeFOSAA, N-EtFOSAA, N-MeFOSE, and N-EtFOSE, showed increasing or decreasing concentration trends under at least one of the experimental conditions investigated. Increases in concentrations of N-MeFOSAA and N-EtFOSAA in surface water and effluent samples at +20 and 4 °C correlated with the decreases in the concentrations of N-MeFOSE and N-EtFOSE, respectively, suggesting analyte interconversion during sample storage. This is the first time such analyte conversion is reported in samples under storage, and this work demonstrates the importance of assessing stability of PFAS in environmentally relevant matrices. The significance of this study extends beyond sample storage for analysis, as toxicological and exposure studies conducted at room temperature also need to consider the significance of analyte degradation through the exposure process.
The environmental occurrence of perfluorooctane sulfonate (PFOS) can arise from its direct use as well as from transformation of precursors ((N-alkyl substituted) perfluorooctane sulfonamides; FOSAMs). Perfluorooctane sulfonamidoethanol-based phosphate (SAmPAP) esters are among numerous potential PFOS-precursors which have not been previously detected in the environment and for which little is known about their stability. Based on their high production volume during the 1970s-2002 and widespread use in food contact paper and packaging, SAmPAP esters may be potentially significant sources of PFOS. Here we report for the first time on the environmental occurrence of SAmPAP diester in marine sediments from an urbanized marine harbor in Vancouver, Canada. SAmPAP diester concentrations in sediment (40-200 pg/g dry weight) were similar to those of PFOS (71-180 pg/g). A significant (p < 0.05) correlation was observed between SAmPAP diester and N-ethyl perfluorooctane sulfonamido acetate (an anticipated degradation product of SAmPAP diester). ∑PFOS-precursor (FOSAM) concentrations in sediment (120-1100 pg/g) were 1.6-24 times greater than those of PFOS in sediment. Although SAmPAP diester was not detected in water, PFOS was observed at concentrations up to 710 pg/L. Among the per- and polyfluoroalkyl substances monitored in the present work, mean log-transformed sediment/water distribution coefficients ranged from 2.3 to 4.3 and increased with number of CF(2) units and N-alkyl substitution (in the case of FOSAMs). Overall, these results highlight the importance of FOSAMs as potentially significant sources of PFOS, in particular for urban marine environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.