Background: Prescribing repetitions relative to task-failure is an emerging approach to resistance training. Under this approach, participants terminate the set based on their prediction of the remaining repetitions left to task-failure. While this approach holds promise, an important step in its development is to determine how accurate participants are in their predictions. That is, what is the difference between the predicted and actual number of repetitions remaining to task-failure, which ideally should be as small as possible. Objective: Examine the accuracy in predicting repetitions to task-failure in resistance exercises. Design: Scoping review and exploratory meta-analysis. Search and Inclusion: A systematic literature search was conducted with PubMed, SPORTDiscus, and Google Scholar in January 2021. Inclusion criteria included studies with healthy participants who predicted the number of repetitions they can complete to task-failure in various resistance exercises, before or during an ongoing set, which was performed to taskfailure. Sixteen publications were eligible for inclusion, of which 13 publications that cover 12 studies were included in our meta-analysis with a total of 414 participants. Results: The main multilevel meta-analysis model including all effects sizes (262 across 12 clusters) revealed that participants tended to under predict the number of repetitions to task-failure by 0.95 repetitions (95% CIs= 0.17 to 1.73), but with considerable heterogeneity (Q(261)= 3060, p< 0.0001; I 2 = 97.9%). Meta-regressions showed that prediction accuracy slightly improved when the predictions were made closer to set failure (β= -0.025 [95% CIs= -0.05 to
Deloading refers to a purposeful reduction in training demand with the intention of enhancing preparedness for successive training cycles. Whilst deloading is a common training practice in strength and physique sports, little is known about how the necessary reduction in training demand should be accomplished. Therefore, the purpose of this research was to determine current deloading practices in competitive strength and physique sports. Eighteen strength and physique coaches from a range of sports (weightlifting, powerlifting, and bodybuilding) participated in semi-structured interviews to discuss their experiences of deloading. The mean duration of coaching experience at ≥ national standard was 10.9 (SD = 3.9) years. Qualitative content analysis identified Three categories: definitions, rationale, and application. Participants conceptualised deloading as a periodic, intentional cycle of reduced training demand designed to facilitate fatigue management, improve recovery, and assist in overall training progression and readiness. There was no single method of deloading; instead, a reduction in training volume (achieved through a reduction in repetitions per set and number of sets per training session) and intensity of effort (increased proximity to failure and/or reduction in relative load) were the most adapted training variables, along with alterations in exercise selection and configuration. Deloading was typically prescribed for a duration of 5 to 7 days and programmed every 4 to 6 weeks, although periodicity was highly variable. Additional findings highlight the underrepresentation of deloading in the published literature, including a lack of a clear operational definition.
Background: Since many people choose to perform resistance training unsupervised, and a lack of supervision within strength training is reported to result in inadequate workout quality, we aimed to compare outcomes for resistance training with and without supervision. Methods: A systematic review and meta-analysis were performed for performance/functional outcomes and/or body composition measurements. Results: 12 studies were included in the review; 301 and 276 participants were in supervised and unsupervised groups, respectively. The main model for all performance/function effects revealed a small, standardised point estimate favouring SUP (0.28 [95%CI = 0.02 to 0.55]). For sub-grouped outcome types, there was very poor precision of robust estimates for speed, power, function, and endurance. However, for strength there was a moderate effect favouring SUP (0.40 [95%CI = 0.06 to 0.74]). The main model for all body composition effects revealed a trivial standardised point estimate favouring SUP (0.07 [95%CI = -0.01 to 0.15]). Conclusions: Supervised resistance training, compared to unsupervised training, might produce a small effect on increases in performance/function, most likely in strength, but has little impact on body composition outcomes.
Abstract Background: Range of motion (ROM) during resistance training is of growing interest and is potentially used to elicit differing adaptations (e.g. muscle hypertrophy and muscular strength and power). To date, attempts at synthesising the data on ROM during resistance training have primarily focused on muscle hypertrophy in the lower body. Objective: Our aim was to meta-analyse and systematically review the effects of ROM on a variety of outcomes including hypertrophy, strength, sport, power and body-fat type outcomes. Following pre-registration and consistent with PRISMA guidelines, a systematic review of PubMed and SportsDISCUS was performed. Data was extracted and a Bayesian multi-level meta-analysis was performed. A range of exploratory sub-group and moderator analyses were performed. Results: The main model revealed a trivial SMD (0.12; 95% CI: –0.02, 0.26) in favour of full ROM compared to partial ROM. When grouped by outcome, SMDs all favoured full ROM, but SMDs were trivial to small (all between 0.05 to 0.2). Sub-group analyses suggested there may be a muscle hypertrophy benefit to partial ROM training at long muscle lengths compared to using a full ROM (–0.28; 95% CI: –0.81, 0.16). Analysis also suggested the existence of a specificity aspect to ROM, such that training in the ROM being tested as an outcome resulted in greater strength adaptations. No clear differences were found between upper- and lower-body adaptations when ROM was manipulated. Conclusions: Overall, our results suggest that using a full or long ROM may enhance results for most outcomes (strength, speed, power, muscle size, and body composition). Differences in adaptations are trivial to small. As such, partial ROM resistance training might present an efficacious alternative for variation and personal preference, or where injury prevents full-ROM resistance training.
The aim of this multi-experiment paper was to explore the concept of the minimum effective training dose (METD) required to increase 1-repetition-maximum (1RM) strength in powerlifting (PL) athletes. The METD refers to the least amount of training required to elicit meaningful increases in 1RM strength. A series of five studies utilising mixed methods, were conducted using PL athletes & coaches of all levels in an attempt to better understand the METD for 1RM strength. The studies of this multi-experiment paper are: an interview study with elite PL athletes and highly experienced PL coaches (n = 28), an interview and survey study with PL coaches and PL athletes of all levels (n = 137), two training intervention studies with intermediate-advanced PL athletes (n = 25) and a survey study with competitive PL athletes of different levels (n = 57). PL athletes looking to train with a METD approach can do so by performing ~3–6 working sets of 1–5 repetitions each week, with these sets spread across 1–3 sessions per week per powerlift, using loads above 80% 1RM at a Rate of Perceived Exertion (RPE) of 7.5–9.5 for 6–12 weeks and expect to gain strength. PL athletes who wish to further minimize their time spent training can perform autoregulated single repetition sets at an RPE of 9–9.5 though they should expect that strength gains will be less likely to be meaningful. However, the addition of 2–3 back-off sets at ~80% of the single repetitions load, may produce greater gains over 6 weeks while following a 2-3-1 squat-bench press-deadlift weekly training frequency. When utilizing accessory exercises in the context of METD, PL athletes typically utilize 1–3 accessory exercises per powerlift, at an RPE in the range of 7–9 and utilize a repetition range of ~6–10 repetitions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.