The interaction, in aqueous solution, of the synthetic pentasaccharide AGA*IA(M) (GlcN,6-SO(3)alpha 1-4GlcA beta 1-4GlcN,3,6-SO(3)alpha 1-4IdoA,2-SO(3)alpha 1-4GlcN,6-SO(3)alpha OMe; where GlcN,6-SO(3) is 2-deoxy-2-sulphamino-alpha-D-glucopyranosyl 6-sulphate, IdoA is l-iduronic acid and IdoA2-SO(3) is L-iduronic acid 2-sulphate), which exactly reproduces the structure of the specific binding sequence of heparin and heparan sulphate for antithrombin III, has been studied by NMR. In the presence of antithrombin there were marked changes in the chemical shifts and nuclear Overhauser effects (NOEs), compared with the free state. On the basis of the optimized geometry of the pentasaccharide the transferred NOEs were interpreted with full relaxation and conformational exchange matrix analysis. An analysis of the three-dimensional structures of the pentasaccharide in the free state, and in the complex, revealed the binding to be accompanied by dihedral angle variation at the A-G and I-A(M) (where G, I, A and A(M) are beta-d-glucuronic acid, 2-O-sulphated alpha-L-iduronic acid, N,6-O-sulphated alpha-D-glucosamine and the alpha-methyl-glycoside of A respectively) glycosidic linkages. Evidence is also provided that the protein drives the conformation of the 2-O-sulphated iduronic acid residue towards the skewed (2)S(0) form.
The interaction, in aqueous solution, of the synthetic pentasaccharide AGA∗IAM (GlcN,6-SO3α1–4GlcAβ1–4GlcN,3,6-SO3α1–4IdoA,2-SO3α1–4GlcN,6-SO3αOMe; where GlcN,6-SO3 is 2-deoxy-2-sulphamino-α-d-glucopyranosyl 6-sulphate, IdoA is l-iduronic acid and IdoA2-SO3 is l-iduronic acid 2-sulphate), which exactly reproduces the structure of the specific binding sequence of heparin and heparan sulphate for antithrombin III, has been studied by NMR. In the presence of antithrombin there were marked changes in the chemical shifts and nuclear Overhauser effects (NOEs), compared with the free state. On the basis of the optimized geometry of the pentasaccharide the transferred NOEs were interpreted with full relaxation and conformational exchange matrix analysis. An analysis of the three-dimensional structures of the pentasaccharide in the free state, and in the complex, revealed the binding to be accompanied by dihedral angle variation at the A–G and I–AM (where G, I, A and AM are β-d-glucuronic acid, 2-O-sulphated α-l-iduronic acid, N,6-O-sulphated α-d-glucosamine and the α-methyl-glycoside of A respectively) glycosidic linkages. Evidence is also provided that the protein drives the conformation of the 2-O-sulphated iduronic acid residue towards the skewed 2S0 form.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.