Diagnosis of the type of glomerular disease that causes the nephrotic syndrome is necessary for appropriate treatment and typically requires a renal biopsy. The goal of this study was to identify candidate protein biomarkers to diagnose glomerular diseases. Proteomic methods and informatic analysis were used to identify patterns of urine proteins that are characteristic of the diseases. Urine proteins were separated by two-dimensional electrophoresis in 32 patients with FSGS, lupus nephritis, membranous nephropathy, or diabetic nephropathy. Protein abundances from 16 patients were used to train an artificial neural network to create a prediction algorithm. The remaining 16 patients were used as an external validation set to test the accuracy of the prediction algorithm. In the validation set, the model predicted the presence of the diseases with sensitivities between 75 and 86% and specificities from 92 to 67%. The probability of obtaining these results in the novel set by chance is 5 ؋ 10 ؊8 . Twenty-one gel spots were most important for the differentiation of the diseases. The spots were cut from the gel, and 20 were identified by mass spectrometry as charge forms of 11 plasma proteins: Orosomucoid, transferrin, ␣-1 microglobulin, zinc ␣-2 glycoprotein, ␣-1 antitrypsin, complement factor B, haptoglobin, transthyretin, plasma retinol binding protein, albumin, and hemopexin. These data show that diseases that cause nephrotic syndrome change glomerular protein permeability in characteristic patterns. The fingerprint of urine protein charge forms identifies the glomerular disease. The identified proteins are candidate biomarkers that can be tested in assays that are more amenable to clinical testing.
Each author contributed important intellectual content during manuscript drafting or revision and accepts accountability for the overall work by ensuring that questions pertaining to the accuracy or integrity of any portion of the work are appropriate investigated and resolved. Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Reactive oxygen species (ROS) are increasingly believed to be important intracellular signaling molecules in mitogenic pathways involved in the pathogenesis of glomerulonephritis (GN). We explored the effects of the antioxidants alpha-lipoic acid and N-acetyl-l-cysteine on ERK activation in cultured mesangial cells and the role of ERK activation in the severity of glomerular injury in a rat model of anti-Thy 1 GN. In cultured mesangial cells, growth factors stimulated ERK phosphorylation by 150-450%. Antioxidants reduced this increase by 50-60%. Induction of anti-Thy 1 nephritis in rats led to a 210% increase in glomerular ERK phosphorylation. This increase in phosphorylated ERK was reduced by 50% in animals treated with alpha-lipoic acid. Treatment with alpha-lipoic acid resulted in significant improvement of glomerular injury. Cellular proliferation was reduced by 100%, and the number of proliferating cell nuclear antigen-positive cells was reduced by 64%. The increased expression of glomerular transforming growth factor-beta1 protein and mRNA in rats with anti-Thy 1 nephritis was significantly attenuated and mesangial cell transformation into myofibroblasts was completely prevented by treatment with alpha-lipoic acid. The effects of alpha-lipoic acid were at least partially due to inhibition of oxidative stress. In rats with anti-Thy 1 nephritis, ROS production was increased 400-500%, and this increase was inhibited by 55% by treatment with alpha-lipoic acid. We suggest that ROS may mediate glomerular injury by inducing ERK phosphorylation. alpha-Lipoic acid should be considered a potential therapeutic agent in certain types of human GN.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.