The Achilles tendon (AT) has the capacity to store and release elastic energy during walking, contributing to metabolic energy savings. In diabetes patients, it is hypothesized that a stiffer Achilles tendon may reduce the capacity for energy saving through this mechanism, thereby contributing to an increased metabolic cost of walking (CoW). The aim of this study was to investigate the effects of diabetes and diabetic peripheral neuropathy (DPN) on the Achilles tendon and plantarflexor muscle-tendon unit behavior during walking. Twenty-three nondiabetic controls (Ctrl); 20 diabetic patients without peripheral neuropathy (DM), and 13 patients with moderate/severe DPN underwent gait analysis using a motion analysis system, force plates, and ultrasound measurements of the gastrocnemius muscle, using a muscle model to determine Achilles tendon and muscle-tendon length changes. During walking, the DM and particularly the DPN group displayed significantly less Achilles tendon elongation (Ctrl: 1.81; DM: 1.66; and DPN: 1.54 cm), higher tendon stiffness (Ctrl: 210; DM: 231; and DPN: 240 N/mm), and higher tendon hysteresis (Ctrl: 18; DM: 21; and DPN: 24%) compared with controls. The muscle fascicles of the gastrocnemius underwent very small length changes in all groups during walking (~0.43 cm), with the smallest length changes in the DPN group. Achilles tendon forces were significantly lower in the diabetes groups compared with controls (Ctrl: 2666; DM: 2609; and DPN: 2150 N). The results strongly point toward the reduced energy saving capacity of the Achilles tendon during walking in diabetes patients as an important factor contributing to the increased metabolic CoW in these patients. NEW & NOTEWORTHY From measurements taken during walking we observed that the Achilles tendon in people with diabetes and particularly people with diabetic peripheral neuropathy was stiffer, was less elongated, and was subject to lower forces compared with controls without diabetes. These altered properties of the Achilles tendon in people with diabetes reduce the tendon's energy saving capacity and contribute toward the higher metabolic energy cost of walking in these patients.
People with diabetes walk slower and display biomechanical gait alterations compared with controls, but it remains unknown whether the metabolic cost of walking (CoW) is elevated. The aim of this study was to investigate the CoW and the lower limb concentric joint work as a major determinant of the CoW, in patients with diabetes and diabetic peripheral neuropathy (DPN). Thirty-one nondiabetic controls (Ctrl), 22 diabetic patients without peripheral neuropathy (DM), and 14 patients with moderate/severe DPN underwent gait analysis using a motion analysis system and force plates and treadmill walking using a gas analyzer to measure oxygen uptake. The CoW was significantly higher particularly in the DPN group compared with controls and also in the DM group (at selected speeds only) compared with controls, across a range of matched walking speeds. Despite the higher CoW in patients with diabetes, concentric lower limb joint work was significantly lower in DM and DPN groups compared with controls. The higher CoW is likely due to energetic inefficiencies associated with diabetes and DPN reflecting physiological and biomechanical characteristics. The lower concentric joint work in patients with diabetes might be a consequence of kinematic gait alterations and may represent a natural strategy aimed at minimizing the CoW.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.