Kagome metal TbMn6Sn6 was recently discovered to be a ferrimagnetic topological Dirac material by scanning tunneling microscopy/spectroscopy measurements. Here, we report the observation of large anomalous Nernst effect and anomalous thermal Hall effect in this compound. The anomalous transverse transport is consistent with the Berry curvature contribution from the massive Dirac gaps in the 3D momentum space as demonstrated by our first-principles calculations. Furthermore, the transverse thermoelectric transport exhibits asymmetry with respect to the applied magnetic field, i.e., an exchange-bias behavior. Together, these features place TbMn6Sn6 as a promising system for the outstanding thermoelectric performance based on anomalous Nernst effect.
Topological kagome magnets RMn6Sn6 (R = rare earth element) attract numerous interests due to their non-trivial band topology and room-temperature magnetism. Here, we report a high entropy version of kagome magnet, (Gd0.38Tb0.27Dy0.20Ho0.15)Mn6Sn6. Such a high entropy material exhibits multiple spin reorientation transitions, which is not seen in all the related parent compounds and can be understood in terms of competing magnetic interactions enabled by high entropy. Furthermore, we also observed an intrinsic anomalous Hall effect, indicating that the high entropy phase preserves the non-trivial band topology. These results suggest that high entropy may provide a route to engineer the magnetic structure and expand the horizon of topological materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.