We purified, cloned, and expressed aggrecanase, a protease that is thought to be responsible for the degradation of cartilage aggrecan in arthritic diseases. Aggrecanase-1 [a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4)] is a member of the ADAMTS protein family that cleaves aggrecan at the glutamic acid-373-alanine-374 bond. The identification of this protease provides a specific target for the development of therapeutics to prevent cartilage degradation in arthritis.
Aggrecan is responsible for the mechanical properties of cartilage. One of the earliest changes observed in arthritis is the depletion of cartilage aggrecan due to increased proteolytic cleavage within the interglobular domain. Two major sites of cleavage have been identified in this region at Asn 341 -Phe 342 and Glu 373 -Ala 374 . While several matrix metalloproteinases have been shown to cleave at Asn 341 -Phe 342 , an as yet unidentified protein termed "aggrecanase" is responsible for cleavage at Glu 373 -Ala 374 and is hypothesized to play a pivotal role in cartilage damage. We have identified and cloned a novel disintegrin metalloproteinase with thrombospondin motifs that possesses aggrecanase activity, ADAMTS11 (aggrecanase-2), which has extensive homology to ADAMTS4 (aggrecanase-1) and the inflammationassociated gene ADAMTS1. ADAMTS11 possesses a number of conserved domains that have been shown to play a role in integrin binding, cell-cell interactions, and extracellular matrix binding. We have expressed recombinant human ADAMTS11 in insect cells and shown that it cleaves aggrecan at the Glu 373 -Ala 374 site, with the cleavage pattern and inhibitor profile being indistinguishable from that observed with native aggrecanase. A comparison of the structure and expression patterns of ADAMTS11, ADAMTS4, and ADAMTS1 is also described. Our findings will facilitate the study of the mechanisms of cartilage degradation and provide targets to search for effective inhibitors of cartilage depletion in arthritic disease.Aggrecan is the major proteoglycan of cartilage and is responsible for its compressibility and stiffness. Aggrecan contains two N-terminal globular domains, G 1 and G 2 , separated by a proteolyticaly sensitive interglobular domain, followed by a glycosaminoglycan attachment region and a C-terminal globular domain (G 3 ). The G 1 domain of aggrecan interacts with hyaluronic acid and link protein to form large aggregates containing multiple aggrecan monomers that are trapped within the cartilage matrix. Cleavage of aggrecan has been shown to occur at Asn 341 -Phe 342 and Glu 373 -Ala 374 within the interglobular domain, with the cleaved aggrecan being free to exit the matrix since it lacks the G 1 domain, which is responsible for formation of the high molecular weight complexes. Results from several studies suggest that cleavage at the Glu 373 -Ala 374 site is responsible for the increased aggrecan degradation observed in inflammatory joint disease. Products resulting from cleavage at the Glu 373 -Ala 374 site have been shown to accumulate in cartilage explants and chondrocyte cultures treated with interleukin-1 and retinoic acid (1-5) and in the synovial fluid of patients with osteoarthritis and inflammatory joint disease (6, 7). While several characterized matrix metalloproteases 1 have been shown to cleave at the Asn 341 -Phe 342 site (8 -14), they are not responsible for the observed cleavage at Glu 373 -Ala 374 . A novel proteolytic activity, termed "aggrecanase," has been hypothesized to be respo...
Overexpression and activating mutations of ErbB family members have been implicated in the development and progression of a variety of tumor types. Cleavage of the HER2 receptor by an as yet unidentified ectodomain sheddase has been shown to liberate the HER2 extracellular domain (ECD) leaving a fragment with constitutive kinase activity that can provide ligand-independent growth and survival signals to the cell. This process is clinically relevant since HER2 ECD serum levels in metastatic breast cancer patients are associated with a poorer prognosis. Thus, inhibition of the HER2 sheddase may provide a novel therapeutic approach for breast cancer. We describe the use of transcriptional profiling, pharmacological and in vitro approaches to identify the major source of HER2 sheddase activity. Real-time PCR was used to identify those ADAM family members which were expressed in HER2 shedding cell lines. siRNAs that selectively inhibited ADAM10 expression reduced HER2 shedding. In addition, we profiled over 1000 small molecules for in vitro inhibition of a panel of ADAM and MMP proteins; a positive correlation was observed only between ADAM10 inhibition and reduction of HER2 ECD shedding in a cell based assay. Finally, in vitro studies demonstrate that in combination with low doses of Herceptin, selective ADAM10 inhibitors decrease proliferation in HER2 overexpressing cell lines while inhibitors, that do not inhibit ADAM10, have no impact. These results are consistent with ADAM10 being a major determinant of HER2 shedding, the inhibition of which, may provide a novel therapeutic approach for treating a variety of cancers with active HER2 signaling.
When substituted with a phenol, the small inhibitor induces the closed conformation of the protein and displaces all waters in the catalytic pocket. Saturated IZD-containing peptides are more potent inhibitors than unsaturated analogs because the IZD heterocycle and phenyl ring directly attached to it bind in a nearly orthogonal orientation with respect to each other, a conformation that is close to the energy minimum of the saturated IZD-phenyl moiety. These results explain why the heterocycle is a potent phosphonate mimetic and an ideal starting point for designing small nonpeptidic inhibitors. Protein-tyrosine phosphatase 1B (PTP1B)2 is considered to be one of the best validated drug targets for the treatment of type II diabetes. The enzyme is localized to the cytoplasmic face of the endoplasmic reticulum where it negatively regulates insulin signaling by dephosphorylating phosphotyrosine (Tyr(P)) residues in the kinase regulatory domain of the insulin receptor (IR) (1, 2). Mice lacking the homolog of PTP1B have lower blood glucose levels and improved insulin responsiveness compared with normal and diabetic mice through enhanced IR signaling in peripheral tissues (3, 4). Similar results were also observed when an antisense oligonucleotide was injected into mice (5). These compelling biological results coupled with the wealth of structural data, which have been generated since the crystal structure of PTP1B was determined in 1994 (6), have contributed to the rapid design of many potent inhibitors (7-13). Unfortunately, poor physicochemical properties have limited their development as drug candidates.Crystal structures of PTP1B in complex with phosphorylated peptides corresponding to the IR kinase activation segment (14) and an autophosphorylated site of the epidermal growth factor receptor (15) reveal that the highly negatively charged substrates bind to multiple positively charged sites (Fig. 1a). The catalytic site, which is located at the base of a shallow pocket called the primary phosphate-binding pocket or A site, is the most polar region of the protein, and it contains the phosphatebinding signature motif (Cys 215 -Arg 221 ) common to all members of the protein-tyrosine phosphatase family (16). A second phosphate-binding pocket (B site), adjacent to the A site, was identified from the crystal structures of the protein in complex with a small aryl phosphonate (17) and a bisphosphorylated peptide (14). The B site, which is larger and shallower than the A site and has lower binding affinity for aryl phosphates, is noncatalytic but may play an important role in determining substrate specificity. A third phosphate-binding site (C site) was identified when the distal Tyr(P) mimetic of a bisphosphonate-containing inhibitor unexpectedly bound in a large flat region of the protein near Lys 41 and Arg 47 (18). Overall, the active site of PTP1B possesses very few desirable drug-design features. The highly charged A site and flat, solvent-exposed B and C sites significantly increase the difficulty of designing pote...
Structure-based design led to the discovery of novel (S)-isothiazolidinone ((S)-IZD) heterocyclic phosphotyrosine (pTyr) mimetics that when incorporated into dipeptides are exceptionally potent, competitive, and reversible inhibitors of protein tyrosine phosphatase 1B (PTP1B). The crystal structure of PTP1B in complex with our most potent inhibitor 12 revealed that the (S)-IZD heterocycle interacts extensively with the phosphate binding loop precisely as designed in silico. Our data provide strong evidence that the (S)-IZD is the most potent pTyr mimetic reported to date.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.