Predictive as well as preventive maintenance are tools of maintenance programs that aim to increase or maintain the life expectancy of an equipment through computational techniques and tools. Bearing in mind that the power generation industry has a high maintenance rate with machines and / or electric generators stopped, this research aims to develop a computational model for predicting the Reliability Key Performance Indicator (KPI) to identify how available the equipment will be in a time span of 22 days, for this the methodology to be used will be based on analyzes and tests of artificial neural network (ANN) architectures using the Bayesian Regularizers training algorithm, alternating the transfer functions in the layers hidden to find the best state of convergence and the minimum Root Mean Square Error (RMSE) value calculated between the real and simulated outputs. According to the results obtained by the training, validation and test steps, the algorithm presented a RMSE rate of 0.0000104202 and a 99.9% correlation between the real and simulated values, thus the model is able to identify which machine will have the greatest efficiency and less efficiency within the defined time span.
With the expansion of means of river transportation, especially in the case of small and medium-sized vessels that make routes of greater distances, the cost of fuel, if not taken as an analysis criterion for a larger profit margin, is considered to be a primary factor , considering that the value of fuel specifically diesel to power internal combustion machines is high. Therefore, the use of tools that assist in decision-making becomes necessary, as is the case of the present research, which aims to contribute with a computational model of prediction and optimization of the best speed to decrease the fuel cost considering the characteristics of the SCANIA 315 machine. propulsion model, of a vessel from the river port of Manaus that carries out river transportation to several municipalities in Amazonas. According to the results of the simulations, the best training algorithm of the Artificial Neural Network (ANN) was the BFGS Quasi-Newton considering the characteristics of the engine for optimization with Genetic Algorithm (AG).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.