Bt protein content in transgenic insect resistant (Bt) maize may vary between tissues within plants and between plants growing under different environmental conditions. However, it is unknown whether and how Bt protein content correlates with transgene expression, and whether this relationship is influenced by stressful environmental conditions. Two Bt maize varieties containing the same transgene cassette (MON 810) were grown under optimal and stressful conditions. Before and during stress exposure, the upper leaves were analysed for transgene expression using quantitative RT-PCR and for Bt content using ELISA. Under optimal conditions there was no significant difference in the transgene expression between the two investigated Bt maize varieties whereas Bt protein content differed significantly. Transgene expression was correlated with Bt protein content in only one of the varieties. Under stressful environmental conditions we found similar transgene expressions as under optimal conditions but Bt content responded differently. These results suggest that Bt content is not only controlled by the transgene expression but is also dependent on the genetic background of the maize variety. Under stressful conditions the concentration of Bt protein is even more difficult to predict.
A novel weed has recently emerged, causing serious agronomic damage in one of the most important maize-growing regions of Western Europe, the Northern Provinces of Spain. The weed has morphological similarities to a wild relative of maize and has generally been referred to as teosinte. However, the identity, origin or genetic composition of ‘Spanish teosinte’ was unknown. Here, we present a genome-wide analysis of single-nucleotide polymorphism (SNP) data for Spanish teosinte, sympatric populations of cultivated maize and samples of reference teosinte taxa. Our data are complemented with previously published SNP datasets of cultivated maize and two Mexican teosinte subspecies. Our analyses reveal that Spanish teosinte does not group with any of the currently recognized teosinte taxa. Based on Bayesian clustering analysis and hybridization simulations, we infer that Spanish teosinte is of admixed origin, most likely involving Zea mays ssp. mexicana as one parental taxon, and an unidentified cultivated maize variety as the other. Analyses of plants grown from seeds collected in Spanish maize fields and experimental crosses under controlled conditions reveal that hybridization does occur between Spanish teosinte and cultivated maize in Spain, and that current hybridization is asymmetric, favouring the introgression of Spanish teosinte into cultivated maize, rather than vice versa.
Background: In 2008/2009, Schmidt and colleagues published a study reporting lethal effects of the microbial Bt toxins Cry1Ab and Cry3Bb on the coccinellid biological control organisms Adalia bipunctata. Based on this study, in concert with over 30 other publications, Mon810 cultivation was banned in Germany in 2009. This triggered two commentaries and one experimental study all published in the journal 'Transgenic Research' that question the scientific basis of the German ban or claim to disprove the adverse effects of the Bt toxins on A. bipunctata reported by Schmidt and colleagues, respectively. This study was undertaken to investigate the underlying reasons for the different outcomes and rebuts the criticism voiced by the two other commentaries.Results: It could be demonstrated that the failure to detect an adverse effect by Alvarez-Alfageme and colleagues is based on the use of a significantly different testing protocol. While Schmidt and colleagues exposed and fed larvae of A. bipunctata continuously, Alvarez-Alfageme and colleagues applied an exposure/recovery protocol. When this exposure/recovery protocol was applied to a highly sensitive target insect, Ostrinia nubilalis, the lethal effect was either significantly reduced or disappeared altogether. When repeating the feeding experiments with the Bt toxin Cry1Ab using a combined protocol of both previous studies, again, a lethal effect on A. bipunctata larvae was observed. ELISA tests with Bt-toxin fed larvae and pupae confirmed ingestion of the toxin. Conclusions:The new data corroborates earlier findings that Cry1Ab toxin increases mortality in A. bipunctata larvae. It was also shown that the different applied testing protocols explained the contrasting results.
We investigated whether local adaptation has been important in enabling the invasive apomictic species Erigeron annuus to extend its altitudinal range in the Swiss Alps. We first conducted a field survey along several major roads crossing the Swiss Alps to study the distribution and growth performance of E. annuus along an altitudinal gradient. We then used amplified fragment length polymorphism to assess genetic variation within and among populations originating from different altitudes. To complement the molecular analyses, we compared the performance of genotypes with different distributions (i.e. local, occasional, widespread genotypes) in two common gardens at 400 m and 1,000 m a.s.l. Although E. annuus was seldom found above 1,000 m, plant performance in field populations did not decrease with increasing altitude. However, there was a significant decline in genotypic diversity within populations, and highland (711-1,100 m) populations were more differentiated (Gst = 0.55) than lowland (200-530 m) populations (Gst = 0.33). In the common garden experiment, local genotypes (i.e. those restricted to a single population) grew less vigorously than widespread genotypes, and were less likely to reproduce. We found no evidence for on-going adaptive changes and conclude that any selection acting on particular genotypes at the altitudinal limit is weak. This leads us to propose that the patterns in the distribution of genotypic diversity in E. annuus are governed by processes of occasional sexual reproduction, dispersal and extinction that are to a large extent independent of altitude.
Background In 2009, Spanish farmers reported a novel weed, now identified as a relative of maize’s ancestor, teosinte, in their maize fields. Introgression of the insect resistance transgene cry1Ab from genetically modified (GM) maize into populations of this weedy Spanish teosinte could endow it with additional defense mechanisms. The aims of this study were: (1) to test if hybridization between GM maize and weedy plants from Spain is possible; (2) to understand the relationship between transgene transcription activity, concentrations of the expected transgene product (Cry1Ab protein) and the bioactivity of the latter on target insect pests following transgene flow from GM maize into Spanish teosinte plants. Results We demonstrated that hybridization between GM maize and the weedy Spanish teosinte is possible, with no observable barrier to the formation of crop/weed hybrids when teosinte served as pollen donor. When GM maize plants were used as pollen donors, significant crossing incompatibility was observed: hybrid plants produced only few “normal” seeds. Nevertheless, viable F1 seeds from GM pollen crossed onto teosinte were indeed obtained. The cry1Ab transgene was stably expressed as mRNA in all crossings and backgrounds. Similarly, toxicity on neonate Ostrinia nubilalis, presumably due to Cry1Ab protein, was consistently expressed in teosinte hybrids, with mortality rates 95% or higher after only 4 days exposure, similar to rates on parental GM maize plants. Nevertheless, no strong correlations were observed between transgene transcription levels and Cry1Ab concentrations, nor between Cry1Ab concentrations and insect mortality rates across all of the different genetic backgrounds. Conclusions Our results establish fundamental parameters for environmental risk assessments in the European context: first, we show that crop/weed hybridization in fields where maize and teosinte exist sympatrically can lead to potentially catastrophic transfer of resistance traits into an already noxious weed; second, our results question the viability of using gene dosage to model and predict ecological performance in either the intended crop plant or the undesired teosinte weed. Significant questions remain that should be addressed in order to provide a scientific, sound approach to the management of this novel weed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.