Bt protein content in transgenic insect resistant (Bt) maize may vary between tissues within plants and between plants growing under different environmental conditions. However, it is unknown whether and how Bt protein content correlates with transgene expression, and whether this relationship is influenced by stressful environmental conditions. Two Bt maize varieties containing the same transgene cassette (MON 810) were grown under optimal and stressful conditions. Before and during stress exposure, the upper leaves were analysed for transgene expression using quantitative RT-PCR and for Bt content using ELISA. Under optimal conditions there was no significant difference in the transgene expression between the two investigated Bt maize varieties whereas Bt protein content differed significantly. Transgene expression was correlated with Bt protein content in only one of the varieties. Under stressful environmental conditions we found similar transgene expressions as under optimal conditions but Bt content responded differently. These results suggest that Bt content is not only controlled by the transgene expression but is also dependent on the genetic background of the maize variety. Under stressful conditions the concentration of Bt protein is even more difficult to predict.
ObjectivesTo determine the genetic composition of the first VanA-type plasmid (pIP816) reported, which was isolated from a clinical Enterococcus faecium (BM4147) strain in France in 1986, and to reveal the genetic units responsible for the dissemination of the vanA gene cluster by comparisons with current, published and additionally generated vanA-spanning plasmid sequences obtained from a heterogeneous E. faecium strain collection (n = 28).MethodsPlasmid sequences were produced by shotgun sequencing using ABI dye chemistry and primer walking, and were subsequently annotated. Comparative sequence analysis of the vanA region was done with published plasmids, with a partial vanA plasmid (pVEF4) reported here and to >140 kb of sequence obtained from a collection of vanA-harbouring plasmid fragments.ResultsBioinformatic analyses revealed that pIP816 from 1986 and contemporary vanA plasmids shared a conserved genetic fragment of 25 kb, spanning the 10.85 kb vanA cluster encoded by Tn1546, and that the larger unit is present in both clinical and animal complexes of E. faecium. A new group II intron in pVEF4 was characterized.ConclusionsComparative DNA analyses suggest that Tn1546 disseminates in and between clonal complexes of E. faecium as part of a larger genetic unit, possibly as a composite transposon flanked by IS1216 elements.
New and emerging gene-editing techniques make it possible to target specific genes in species with greater speed and specificity than previously possible. Of major relevance for plant breeding, regulators and scientists are discussing how to regulate products developed using these gene-editing techniques. Such discussions include whether to adopt or adapt the current framework for GMO risk governance in evaluating the impacts of gene-edited plants, and derived products, on the environment, human and animal health and society. Product classification or definition is one of several aspects of the current framework being criticized. Further, knowledge gaps related to risk assessments of gene-edited organisms—for example of target and off-target effects of intervention in plant genomes—are also of concern. Resolving these and related aspects of the current framework will involve addressing many subjective, value-laden positions, for example how to specify protection goals through ecosystem service approaches. A process informed by responsible research and innovation practices, involving a broader community of people, organizations, experts, and interest groups, could help scientists, regulators, and other stakeholders address these complex, value-laden concerns related to gene-editing of plants with and for society.
Naturally transformable bacteria acquire chromosomal DNA from related species at lower frequencies than from cognate DNA sources. To determine how genome location affects heterogamic transformation in bacteria, we inserted an nptI marker into random chromosome locations in 19 different strains of the Acinetobacter genus (.24% divergent at the mutS/trpE loci). DNA from a total of 95 nptI-tagged isolates was used to transform the recipient Acinetobacter baylyi strain ADP1. A total of .1300 transformation assays revealed that at least one nptI-tagged isolate for each of the strains/species tested resulted in detectable integration of the nptI marker into the ADP1 genome. Transformation frequencies varied up to $10,000-fold among independent nptI insertions within a strain. The location and local sequence divergence of the nptI flanking regions were determined in the transformants. Heterogamic transformation depended on RecA and was hampered by DNA mismatch repair. Our studies suggest that single-locus-based studies, and inference of transfer frequencies from general estimates of genomic sequence divergence, is insufficient to predict the recombination potential of chromosomal DNA fragments between more divergent genomes. Interspecies differences in overall gene content, and conflicts in local gene organization and synteny are likely important determinants of the genomewide variation in recombination rates between bacterial species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.