Protein kinase M ζ (PKMζ) is a constitutively active form of atypical PKC that is exclusively expressed in the brain and implicated in the maintenance of long-term memory1–9. Most studies that support a role for PKMζ in memory maintenance have used pharmacological PKMζ inhibitors such as the myristoylated zeta inhibitory peptide (ZIP) or chelerythrine. Here, we used a genetic approach and targeted exon 9 of the Prkcz gene to generate mice that lack both protein kinase C ζ (PKCζ) and PKMζ (Prkcz−/− mice). Prkcz−/− mice showed normal behavior in a cage environment and in baseline tests of motor function and sensory perception, but displayed reduced anxiety-like behavior. Surprisingly, they did not show deficits in learning or memory in tests of cued fear conditioning, novel object recognition, object location recognition, conditioned place preference (CPP) for cocaine, or motor learning, when compared with wild-type littermates. ZIP injection into the nucleus accumbens (NAc) reduced expression of cocaine CPP in Prkcz−/− mice. In vitro, ZIP and scrambled ZIP inhibited PKMζ, PKCι and PKCζ with similar Ki values. Chelerythrine was a weak inhibitor of PKMζ (Ki = 76 µM). Our findings show that absence of PKMζ does not impair learning and memory in mice, and that ZIP can erase reward memory even when PKMζ is not present.
Uncontrolled consumption of alcohol is a hallmark of alcohol abuse disorders, however, the central molecular mechanisms underlying excessive alcohol consumption are still unclear. Here, we report that the GTP binding protein, H-Ras in the nucleus accumbens (NAc) plays a key role in neuroadaptations that underlie excessive alcohol-drinking behaviors. Specifically, acute (15 min) systemic administration of alcohol (2.5 g/kg) leads to the activation of H-Ras in the NAc of mice, which is observed even 24 hrs later. Similarly, rat operant self-administration of alcohol (20%) also results in the activation of H-Ras in the NAc. Using the same procedures, we provide evidence suggesting that the exchange factor GRF1 is upstream of H-Ras activation by alcohol. Importantly, we show that infection of mice NAc with lentivirus expressing a short hairpin RNA (siRNA) that targets the H-Ras gene produce a significant reduction of voluntary consumption of 20% alcohol. In contrast, knockdown of H-Ras in the NAc of mice did not alter water, quinine and saccharine intake. Furthermore, using 2-bottle choice and operant self-administration proceduers, we show that inhibiting H-Ras activity by intra-NAc infusion of the farnesyltransferase inhibitor, FTI-276, produced a robust decrease of rats’ alcohol drinking, however, sucrose consumption was unaltered. Finally, intra-NAc infusion of FTI-276 also resulted in an attenuation of seeking for alcohol. Together, these results position H-Ras as a central molecular mediator of alcohol’s actions within the mesolimbic system and put forward the potential value of the enzyme as a novel target to treat alcohol use disorders.
Neuronal signal transduction by the JNK MAP kinase pathway is altered by a broad array of stimuli including exposure to the widely abused drug ethanol, but the behavioral relevance and the regulation of JNK signaling is unclear. Here we demonstrate that JNK signaling functions downstream of the Sterile20 kinase family gene tao/Taok3 to regulate the behavioral effects of acute ethanol exposure in both the fruit fly Drosophila and mice. In flies tao is required in neurons to promote sensitivity to the locomotor stimulant effects of acute ethanol exposure and to establish specific brain structures. Reduced expression of key JNK pathway genes substantially rescued the structural and behavioral phenotypes of tao mutants. Decreasing and increasing JNK pathway activity resulted in increased and decreased sensitivity to the locomotor stimulant properties of acute ethanol exposure, respectively. Further, JNK expression in a limited pattern of neurons that included brain regions implicated in ethanol responses was sufficient to restore normal behavior. Mice heterozygous for a disrupted allele of the homologous Taok3 gene (Taok3Gt) were resistant to the acute sedative effects of ethanol. JNK activity was constitutively increased in brains of Taok3Gt/+ mice, and acute induction of phospho-JNK in brain tissue by ethanol was occluded in Taok3Gt/+ mice. Finally, acute administration of a JNK inhibitor conferred resistance to the sedative effects of ethanol in wild-type but not Taok3Gt/+ mice. Taken together, these data support a role of a TAO/TAOK3-JNK neuronal signaling pathway in regulating sensitivity to acute ethanol exposure in flies and in mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.