The need for a new analytical approach was encountered in the course of characterizing newly developed tomato lines resistant to late blight. Late blight resistant tomato lines were created in independent breeding programs using the accession Solanum pimpinellifolium L. (formerly Lycopersicon pimpinellifolium (L.) Miller) L3708 as the source of the resistance. However, initial field observation suggested that the late blight resistance in the lines produced by two independent breeding programs differed. Possible causes included a partial transfer of the late blight resistance derived from S. pimpinellifolium L3708 or the possibility of race specificity of this resistance. A crucial issue was determining the most appropriate and robust analytical method to use with data from laboratory analyses of the responses of nine tomato lines against five P. infestans isolates. Prior analysis by standard ANOVA revealed significant differences across tomato lines but could not determine whether the disease responses in the CLN-R lines were different from those of the heterozygous F(1) hybrids, created by crossing susceptible tomatoes with the fixed CU-R lines. A different analytical method was needed. Therefore, sporangia numbers/leaflet and diseased area data were analyzed using a half-normal probability plot and regression analysis. The results of this analysis show its utility for genetic or pathology studies. Considering only populations of the uniform tomato lines, this method confirms the results obtained by using a standard ANOVA, but provides a clearer demonstration of the distributions of the individuals within the populations and how this distribution impacts variance and the difference among the populations. This method also allows a joint analysis of the uniform lines with an additional population that is less uniform, because it is segregating. Such an analysis would be invalid using a standard ANOVA. The results of this joint analysis determined that the additional population was divergent from the fixed CU-R lines, and, against some isolates, against the CLN-R lines as well. Half-normal probability plot analysis method would be applicable more broadly beyond analysis of disease resistance data. It could be useful for data from populations that are not normally distributed, for traits which are affected by epistatic gene action, and could be useful for selection of extremes.
This work suggests a study on 5 kW plasma power supply design and reactor capacitance estimation algorithm for a wide range of linear output control to operate a plasma reactor. The suggested study is designed to use a two-stage circuit and control the full-bridge circuit of the two-stage circuit using the buck converter output voltage of the single-stage circuit. The switching frequency of the full-bridge circuit is designed to operate through high-frequency switching and obtain maximum output using LC parallel resonance. Soft switching technique(ZVS) is used to reduce the loss caused by high-frequency switching, and duty control of the buck converter is applied to control a wide range of linear output. The internal capacitance of the reactor cannot easily be extracted, and thus, the reactor cannot be operated in an optimized resonant state. To address this issue, this work designs the internal capacitance of the reactor such that estimations can be performed with the developed reactor capacitance estimation algorithm applied to the internal capacitance of the reactor. A 5 kW plasma power supply is designed for a wide range of linear output control, and the validity of the study on the reactor capacitance estimation algorithm is verified.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.