The present study was designed to investigate the molecular mechanisms of [10]-gingerol activity against HCT116 human colon cancer cells. [10]-Gingerol inhibited the proliferation of HCT116 cells by 50% at a concentration of 30 μM, and this inhibition was dose-dependent accompanied by the morphological changes indicative of apoptosis. Furthermore, flow cytometric analysis showed that [10]-gingerol increased DNA in the sub-G1 phase of the cell cycle, and the extent of apoptosis was confirmed by Annexin V and PI double staining. Analysis of the mechanism of these events indicated that [10]-gingerol-treated cells exhibited an increased ratio of Bax/Bcl-2, resulting in the activation of caspase-9, caspase-3, and poly-ADP-ribose polymerase in a dose-dependent manner, which are hallmarks of apoptosis. Moreover, [10]-gingerol-induced apoptosis was accompanied by phosphorylation of the mitogen-activated protein kinase (MAPKs) family, c-Jun N-terminal kinase (JNK), p38 MAPK (p38), and extracellular signal-regulated kinase (ERK). This is the first report to demonstrate the cytotoxic effect of [10]-gingerol on human colon cancer cells, as well as the first to describe its possible chemotherapeutic potentials.
Fucoidan, a sulfated polysaccharide, is found in edible brown algae. In the present study, the molecular mechanisms of fucoidan against mild oxidative stress in human keratinocytes were investigated. The current study indicated that fucoidan significantly augmented the antioxidants heme oxygenase‑1 (HO‑1) and superoxide dismutase‑1 (SOD‑1) via the upregulation of nuclear factor erythroid 2‑related factor 2 (Nrf2) and markedly reduced the cytoplasmic stability of kelch‑like ECH‑associated protein 1. The upregulation of HO‑1 and SOD‑1 detected in the fucoidan‑treated cells may be responsible for the increased resistance to mild oxidative stress, indicating that fucoidan may augment the activities of antioxidant enzymes via stimulating Nrf2. This is the first report, to the best of our knowledge, to demonstrate that fucoidan attenuates oxidative stress by regulating the gene expression of SOD‑1 and HO‑1 via the Nrf2/extracellular signal‑regulated kinase signaling pathway.
This study investigated the mechanisms underlying the cytotoxicity of the green algae Ulva fasciata Delile. U. fasciata extract (UFE) inhibited the growth of HCT 116 human colon cancer cells by 50% at a concentration of 200 μg/ml. In addition, UFE stimulated the production of intracellular reactive oxygen species, an effect that was abolished by pretreatment with N-acetyl cysteine, which also inhibited the cytotoxic effects of UFE. UFE also induced morphological changes indicative of apoptosis, such as the formation of apoptotic bodies, DNA fragmentation, an increase in the population of apoptotic sub-G(1) phase cells, and mitochondrial membrane depolarization. Concomitant activation of the mitochondria-dependent apoptotic pathway occurred via modulation of Bax and Bcl-2 expression, resulting in disruption of the mitochondrial membrane potential and activation of caspase-9 and caspase-3. This is the first report to demonstrate the cytotoxic effect of U. fasciata on human colon cancer cells and to provide a possible mechanism for this activity.
This study investigated the effect of 7,8-dihydroxyflavone (DHF) on the expression and activity of heme oxygenase-1 (HO-1), an enzyme with potent antioxidant properties, as well as the molecular mechanisms involved. DHF markedly upregulated HO-1 mRNA and protein expression in human keratinocytes (HaCaT cells), resulting in increased HO-1 activity. DHF also increased the protein level of transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), which regulates HO-1 expression by binding to the antioxidant response element (ARE) within the HO-1 gene promoter, in a time-dependent manner. Moreover, DHF decreased the expression of Kelch-like ECH-associated protein 1, a repressor of Nrf2 activity, and induced the translocation of Nrf2 from the cytosol into the nucleus, thereby allowing its association with the ARE site. DHF activated extracellular-regulated kinase (ERK) and protein kinase B (PKB, Akt) in keratinocytes, while the ERK and Akt inhibitors attenuated DHF-enhanced Nrf2 and HO-1 expression. DHF also protected the keratinocytes against hydrogen peroxide- and ultraviolet B-induced oxidative damage, while HO-1, ERK and Akt inhibitors markedly suppressed DHF-mediated cytoprotection. Taken together, the results suggested that DHF activates ERK- and Akt-Nrf2 signaling cascades in HaCaT cells, leading to the upregulation of HO-1 and cytoprotection against oxidative stress.
The cytoprotective mechanism of 7, 8-dihydroxyflavone (DHF) against oxidative stress-induced cell damage with respect to its stimulatory effect on the expression of heme oxygenase-1 (HO-1), a potent antioxidant enzyme, was investigated in the present study. Up-regulation of HO-1 expression by DHF was both dose and time dependent in lung fibroblast V79-4 cells. DHF also increased the protein expression level of the transcription factor nuclear factor erythroid-2-related factor 2 (Nrf2), and induced the translocation of Nrf2 from the cytosol into the nucleus, leading to elevated HO-1 expression. The siNrf2 RNA-transfection attenuated HO-1 expression induced by DHF treatment. In addition, DHF induced the activation of extracellular signal-regulated kinase (ERK), while U0126 (a specific pharmacological inhibitor of ERK kinase) abrogated DHF-activated Nrf2 and HO-1 expression. This suggests that DHF increased the levels of Nrf2 and HO-1 via ERK-dependent pathways. Furthermore, DHF significantly prevented the reduction of cell viability in response to oxidative stress; however, U0126 attenuated the protective effect of DHF. Taken together, these results demonstrate that DHF protected cells from oxidative stress via the activation of an ERK/Nrf2/HO-1 signaling pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.