This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
The pregnancy period and first days of a newborn’s life is an important time window to ensure a healthy development of the baby. This is also the time when the mother and her baby are exposed to the same environmental conditions and intake of nutrients, which can be determined by assessing the blood metabolome. For this purpose, dried blood spots (DBS) of newborns are a valuable sampling technique to characterize what happens during this important mother-child time window. We used metabolomics profiles from DBS of newborns (age 2–3 days) and maternal plasma samples at gestation week 24 and postpartum week 1 from n=664 mother-child pairs of the Copenhagen Prospective Studies on Asthma in Childhood 2010 (COPSAC2010) cohort, to study the vertical mother-child transfer of metabolites. Further, we investigated how persistent the metabolites are from the newborn and up to 6 months, 18 months, and 6 years of age. Two hundred seventy two metabolites from UPLC-MS (Ultra Performance Liquid Chromatography-Mass Spectrometry) analysis of DBS and maternal plasma were analyzed using correlation analysis. A total of 11 metabolites exhibited evidence of transfer (R>0.3), including tryptophan betaine, ergothioneine, cotinine, theobromine, paraxanthine, and N6-methyllysine. Of these, 7 were also found to show persistence in their levels in the child from birth to age 6 years. In conclusion, this study documents vertical transfer of environmental and food-derived metabolites from mother to child and tracking of those metabolites through childhood, which may be of importance for the child’s later health and disease.
Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease and can lead to multiple complications, including non-alcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma. The fibrotic liver is characterized by the pathological accumulation of extracellular matrix (ECM) proteins. Type VI collagen alpha3 (Col6a3) is a biomarker of hepatic fibrosis, and its cleaved form, endotrophin (ETP), plays a critical role in adipose tissue dysfunction, insulin resistance, and breast cancer development. Here, we studied the effects of the Col6a3-derived peptide ETP on the progression of chronic liver diseases, such as NASH and liver cancer. We used a doxycycline (Dox)-inducible liver-specific ETP-overexpressing mouse model on a NAFLD-prone (liver-specific SREBP1a transgenic) background. For this, we evaluated the consequences of local ETP expression in the liver and its effect on hepatic inflammation, fibrosis, and insulin resistance. Accumulation of ETP in the liver induced hepatic inflammation and the development of fibrosis with associated insulin resistance. Surprisingly, ETP overexpression also led to the emergence of liver cancer within 10 months in the SREBP1a transgenic background. Our data revealed that ETP can act as a “second hit” during the progression of NAFLD and can play an important role in the development of NASH and hepatocellular carcinoma (HCC). These observations firmly link elevated levels of ETP to chronic liver disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.