Recent studies have demonstrated that dermal papilla cell-derived exosomes (DPC-Exos) promote the anagen stage of hair follicle (HF) growth and delay the catagen stage. However, the roles of DPC-Exos in regulating hair follicle stem cell (HFSC) quiescence and activation remain unknown. Here, we found that HFSC differentiation was induced by co-culture with DPCs, and that DPC-Exos attached to the surface of HFSCs. Using micro RNA (miRNA) high-throughput sequencing, we identified 111 miRNAs that were significantly differentially expressed between DPC-Exos and DPCs, and the predicted target genes of the top 34 differentially expressed miRNAs indicated that DPC-Exos regulate HFSCs proliferation and differentiation via genes involved in cellular signal transduction, fatty acid expression regulation, and cellular communication. The overexpression of miR-22-5p indicated that it negatively regulates HFSC proliferation and LEF1 was revealed as the direct target gene of miR-22-5p. We therefore propose the miR-22-5p- LEF1 axis as a novel pathway regulating HFSC proliferation.
The recently emerged CRISPR/Cas9 approach represents an efficient and versatile genome editing tool for producing genetically modified animals. Β-carotene oxygenase 2 (BCO2) is a key enzyme in the progress of β-carotene metabolism and is associated with yellow adipose tissue color in sheep. We have recently demonstrated targeted multiplex mutagenesis in sheep and have generated a group of BCO2-disrupted sheep by zygote injection of the CRISPR/Cas9 components. Here, we show that biallelic modification of BCO2 resulted in yellow fat, compared with the fat color in monoallelic individuals and wild types (snow-flower white). We subsequently characterized the effects of gene modifications at genetic levels employing sequencing and Western blotting, highlighting the importance of the BCO2 gene for the determination of fat color in sheep. These results indicate that genetic modification via CRISPR/Cas9 holds great potential for validating gene functions as well as for generating desirable phenotypes for economically important traits in livestock.
Until recently, it has been difficult to derive and maintain stable embryonic stem cells lines from livestock species. Sheep ESCs with characteristics similar to those described for rodents and primates have not been produced. We report the derivation of sheep ESCs under a chemically defined culture system containing fibroblast growth factor 2 (FGF2) and a tankyrase/Wnt inhibitor (IWR1). We also show that several culture conditions used for stabilizing naïve and intermediate pluripotency states in humans and mice were unsuitable to maintain ovine pluripotency in vitro. Sheep ESCs display a smooth dome-shaped colony morphology, and maintain an euploid karyotype and stable expression of pluripotency markers after more than 40 passages. We further demonstrate that IWR1 and FGF2 are essential for the maintenance of an undifferentiated state in de novo derived sheep ESCs. The derivation of stable pluripotent cell lines from sheep blastocysts represents a step forward towards understanding pluripotency regulation in livestock species and developing novel biomedical and agricultural applications.
The purpose of this study was to analyze the phenolic profiles of seeds from fifteen Paeonia ostii cultivated populations in China and identify their relationship with antioxidant activities and associated environmental factors. Thirteen individual phenolic compounds were quantitatively determined by HPLC, and (+)-catechin was the most abundant phenolic compound in the seeds. Correlation analysis showed that phenolics were the most effective antioxidant compound class by evaluating DPPH, ABTS, and hydroxyl radical scavenging activities as well as ferric reducing antioxidant power. Latitude and annual rainfall had significant effects on the contents of many phenolic compounds, and elevation was only significantly correlated with gallic acid content. Within fifteen P. ostii cultivated populations, the seeds of Tongling population exhibited the highest phenolic contents and strongest antioxidant activities. These results suggest that Tongling population has a relatively high utilization value and a potential for sources of natural antioxidants.
MicroRNAs play key roles during ovary development, with emerging evidence suggesting that miR-202-5p is specifically expressed in female animal gonads. Granulosa cells (GCs) are somatic cells that are closely related to the development of female gametes in mammalian ovaries. However, the biological roles of miR-202-5p in GCs remain unknown. Here, we show that miR-202-5p is specifically expressed in GCs and accumulates in extracellular vesicles (EVs) from large growth follicles in goat ovaries. In vitro assays showed that miR-202-5p induced apoptosis and suppressed the proliferation of goat GCs. We further revealed that miR-202-5p is a functional miRNA that targets the transforming growth factor-beta type II receptor (TGFβR2). MiR-202-5p attenuated TGF-β/SMAD signaling through the degradation of TGFβR2 at both the mRNA and protein level, decreasing p-SMAD3 levels in GCs. Moreover, we verified that steroidogenic factor 1 (SF1) is a transcriptional factor that binds to the promoters of miR-202 and cytochrome P450 family 19 subfamily A member 1 (CYP19A1) through luciferase reporter and chromatin immunoprecipitation (ChIP) assays. That contributed to positive correlation between miR-202-5p and CYP19A1 expression and estradiol (E2) release. Furthermore, SF1 repressed TGFβR2 and p-SMAD3 levels in GCs through the transactivation of miR-202-5p. Taken together, these results suggest a mechanism by which miR-202-5p regulates canonical TGF-β/SMAD signaling through targeting TGFβR2 in GCs. This provides insight into the transcriptional regulation of miR-202 and CYP19A1 during goat ovarian follicular development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.