Convolutional Neural Network (CNN) has demonstrated promising performance in single-label image classification tasks. However, how CNN best copes with multi-label images still remains an open problem, mainly due to the complex underlying object layouts and insufficient multi-label training images. In this work, we propose a flexible deep CNN infrastructure, called Hypotheses-CNN-Pooling (HCP), where an arbitrary number of object segment hypotheses are taken as the inputs, then a shared CNN is connected with each hypothesis, and finally the CNN output results from different hypotheses are aggregated with max pooling to produce the ultimate multi-label predictions. Some unique characteristics of this flexible deep CNN infrastructure include: 1) no ground-truth bounding box information is required for training; 2) the whole HCP infrastructure is robust to possibly noisy and/or redundant hypotheses; 3) the shared CNN is flexible and can be well pre-trained with a large-scale single-label image dataset, e.g., ImageNet; and 4) it may naturally output multi-label prediction results. Experimental results on Pascal VOC 2007 and VOC 2012 multi-label image datasets well demonstrate the superiority of the proposed HCP infrastructure over other state-of-the-arts. In particular, the mAP reaches 90.5% by HCP only and 93.2% after the fusion with our complementary result in [44] based on hand-crafted features on the VOC 2012 dataset.
The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record.
Numerous approaches on object tracking have been proposed during the past decade with demonstrated success. However, most tracking algorithms are evaluated on limited video sequences and annotations. For thorough performance evaluation, we propose a large-scale database which contains 365 challenging image sequences of pedestrians and rigid objects. The database covers 12 kinds of objects, and most of the sequences are captured from moving cameras. Each sequence is annotated with target location and occlusion level for evaluation. A thorough experimental evaluation of 20 state-of-the-art tracking algorithms is presented with detailed analysis using different metrics. The database is publicly available and evaluation can be carried out online for fair assessments of visual tracking algorithms.
Conventionally, the resource allocation is formulated as an optimization problem and solved online with instantaneous scenario information. Since most resource allocation problems are not convex, the optimal solutions are very difficult to be obtained in real time. Lagrangian relaxation or greedy methods are then often employed, which results in performance loss. Therefore, the conventional methods of resource allocation are facing great challenges to meet the ever-increasing QoS requirements of users with scarce radio resource. Assisted by cloud computing, a huge amount of historical data on scenarios can be collected for extracting similarities among scenarios using machine learning. Moreover, optimal or near-optimal solutions of historical scenarios can be searched offline and stored in advance. When the measured data of current scenario arrives, the current scenario is compared with historical scenarios to find the most similar one. Then, the optimal or near-optimal solution in the most similar historical scenario is adopted to allocate the radio resources for the current scenario. To facilitate the application of new design philosophy, a machine learning framework is proposed for resource allocation assisted by cloudcomputing. An example of beam allocation in multi-user massive multiple-input-multiple-output (MIMO) systems shows that the proposed machine-learning based resource allocation outperforms conventional methods.
Index TermsResource allocation, machine learning, cloud computing, k-nearest neighbour (k-NN), beam allocation algorithm, massive MIMO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.