Climate models project that extreme precipitation events will intensify in proportion to their intensity during the 21st century at large spatial scales. The identification of the causes of this phenomenon nevertheless remains tenuous. Using a large ensemble of North American regional climate simulations, we show that the more rapid intensification of more extreme events also appears as a robust feature at finer regional scales. The larger increases in more extreme events than in less extreme events are found to be primarily due to atmospheric circulation changes. Thermodynamically induced changes have relatively uniform effects across extreme events and regions. In contrast, circulation changes weaken moderate events over western interior regions of North America and enhance them elsewhere. The weakening effect decreases and even reverses for more extreme events, whereas there is further intensification over other parts of North America, creating an “intense gets intenser” pattern over most of the continent.
Abstract:Pan evaporation, as a surrogate of potential evaporation, is reported to have decreased in different regions of the world since the 1950s. There is much literature to explain the decrease in pan evaporation using the so-called evaporation complimentary relationship hypothesis and it is argued that pan evaporation can be understood as a sign of global warming and indication of an accelerating hydrologic cycle. On the other hand, some scientists insist that the pan evaporation trends may be caused by a global dimming, which effectively reduces the solar radiation to the ground surface. However, few reports are available about the changes in pan evaporation and their implications to water balance in arid regions. In the present study, we investigate the trends in pan evaporation in arid regions of China over the past 50 years and attempt to characterize the changes in water balance in these areas. It is found that pan evaporation in these areas has portrayed a statistically significant decreasing trend, which may be attributed mainly to decreases in wind speed and diurnal temperature range and increase in precipitation. The trends in some major meteorological factors such as pan evaporation, precipitation, temperature, wind speed and others imply an enhanced hydrological cycle in the study area.
This letter investigates the factors that drive farmers’ willingness to adopt (WTA) e‐commerce, with a focus on the role of Internet use. The recursive bivariate probit model is applied to analyze data collected from rural China. The empirical results reveal that Internet use increases the likelihood of farmers’ WTA e‐commerce by 20%. Further, we show that the WTA effects of Internet use are heterogeneous between male and female household heads and among different regions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.