Background: Tumor microenvironment (TME) is a complex environment containing tumor cells, tumor-associated macrophages (TAMs), interstitial cells, and non-cellular components. Epithelial-mesenchymal transition (EMT), as a major actor in cancer tumorigenicity and metastasis, was involved in the interaction between TAMs and tumor cells. However, the potential mechanisms of EMT and how EMT-programmed tumor cells affect M2-like TAMs still need further exploration. Methods: An integrated analysis of nine CRC miRNA expression datasets was performed. Functional assays, including the EdU, clone formation, wound healing, and transwell assays, were used to determine the anticancer role of miR-195-5p in human CRC progression. Furthermore, RNA immunoprecipitation, RNA decay, and dual-luciferase reporter assays were used to determine the mechanism of miR-195-p CRC progression. Then co-culture, migration, and ELISA assays were applied to determine the role of miR-195-5p in macrophage recruitment and alternative polarization. Xenograft mouse models were used to determine the role of miR-195-5p in CRC tumorigenicity and TAM polarization in vivo. Results: An integrated analysis confirmed that miR-195-5p was significantly downregulated in CRC tissues, and patients with a low level of miR-195-5p had significantly shortened overall survival as revealed by the TCGA-COAD dataset. Altered miR-195-5p in colon cancer cells led to distinct changes of proliferation, migration, invasion, and EMT. Mechanistically, miR-195-5p regulated NOTCH2 expression in a post-transcriptional manner by directly binding to 3′-UTR of the Notch2 mRNA. Subsequently, miR-195-5p/NOTCH2 suppressed GATA3-mediated IL-4 secretion in CRC cells and ultimately inhibited M2-like TAM polarization. Conclusions: miR-195-5p may play a vital role in regulating NOTCH2-mediated tumor cell EMT, thereby affecting IL-4-related M2-like TAM polarization in CRC.
IntroductionYoung patients receiving chemotherapy occasionally face infertility and premature ovarian failure (POF). Numerous investigations reported that adipose-derived stem cells (ADSCs) transplantation could ameliorate the structure and function of injured tissues. The aim of this study was to explore the therapeutic efficacy of ADSC transplantation for chemotherapy-induced ovarian damage.MethodsFemale mice were injected intraperitoneally with 50 mg/kg cyclophosphamide (CTX). After 15 consecutive days of injection, ADSCs were transplanted either directly into bilateral ovaries or via intravenous injection, and the ovaries were excised after either 1 week or 1 month of treatment. The follicles were counted and categorized, and ovarian histologic sections were stained for TUNEL. Ovarian function was evaluated by monitoring ovulation. ADSC tracking, microarray analyses, and real-time polymerase chain reaction (PCR) were used to assess the inner mechanism of injury and repair.ResultsThe ovarian function of mice exposed to CTX injection improved after ADSC transplantation. The population of follicles at different stages and ovulation significantly increased after the treatment. Immunofluorescence revealed reduced TUNEL staining. The tracking of ADSCs revealed that these cells did not directly differentiate into the follicle component. Microarray analyses indicated that changes in different groups of genes might affect follicle formation or ovulation.ConclusionsADSC transplantation improved ovarian function. Our results suggest a potential mechanism for ADSC therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.