Diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae), became the major pest of Brassica vegetable production in Guangdong, a province in southeastern China, in the late 1980s and has continued to challenge growers, particularly during the spring and autumn. Control has relied on insecticides and, as has happened in other parts of the world, resistance to these has evolved and subsequent field control failures have occurred. We review and summarize the history of diamondback moth management in Guangdong. We show that the geographic distribution of the pest in China is well described by a simple climate niche model. Our model predicts the seasonal phenology and some of the variation in abundance among years in Guangdong. Discrepancies may reflect migration and insecticide use at a landscape level. The scale of the pest problem experienced varies with management practices. Local production breaks, and strict post harvest hygiene are associated with lower pest pressure on large-scale production units. As more and more insecticides become ineffective the need to implement an insecticide resistance management strategy, as well as basic integrated pest management practices, will become more pressing. The potential use and development of a better forecasting system for diamondback moth that will assist these developments is outlined.
A hypervalent iodine(iii) reagent catalyzed carbonylarylation of acrylamides with α-oxocarboxylic acids driven by visible-light without a photoredox catalyst has been developed. The reactions generate the corresponding products in good yields at room temperature. Experiments indicate that a blue LED (450-455 nm) is the most effective energy for the cleavage of the oxygen-iodine bond to initiate the reaction. Mechanistic studies further demonstrate that the reaction undergoes a cascade decarboxylative radical addition/cyclization process along with releasing CO2 and H2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.