In vertebrates, including humans, individuals harbor gut microbial communities whose species composition and relative proportions of dominant microbial groups are tremendously varied. Although external and stochastic factors clearly contribute to the individuality of the microbiota, the fundamental principles dictating how environmental factors and host genetic factors combine to shape this complex ecosystem are largely unknown and require systematic study. Here we examined factors that affect microbiota composition in a large (n = 645) mouse advanced intercross line originating from a cross between C57BL/6J and an ICR-derived outbred line (HR). Quantitative pyrosequencing of the microbiota defined a core measurable microbiota (CMM) of 64 conserved taxonomic groups that varied quantitatively across most animals in the population. Although some of this variation can be explained by litter and cohort effects, individual host genotype had a measurable contribution. Testing of the CMM abundances for cosegregation with 530 fully informative SNP markers identified 18 host quantitative trait loci (QTL) that show significant or suggestive genomewide linkage with relative abundances of specific microbial taxa. These QTL affect microbiota composition in three ways; some loci control individual microbial species, some control groups of related taxa, and some have putative pleiotropic effects on groups of distantly related organisms. These data provide clear evidence for the importance of host genetic control in shaping individual microbiome diversity in mammals, a key step toward understanding the factors that govern the assemblages of gut microbiota associated with complex diseases.16S rDNA | pyrosequencing | quantitative trait loci mapping | microbiome phenotyping | population
Severe malaria is caused by the apicomplexan parasite Plasmodium
falciparum. Despite decades of research the unique biology of these
parasites has made it challenging to establish high throughput genetic
approaches for identification of therapeutic targets. Using transposon
mutagenesis of P. falciparum in an approach that exploited its
AT-rich genome we generated >38,000 mutants, saturating the genome and
defining fitness costs for 95% of genes. Of 5,399 genes we found ~3,000
genes are essential for optimal growth of asexual blood-stages in
vitro. Our study defines ∼1000 essential genes, including
genes associated with drug resistance, vaccine candidates, and conserved
proteins of unknown function. We validated this approach by testing proteasome
pathways for individual mutants associated with artemisinin sensitivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.