Coal gangue is a kind of industrial solid waste with serious ecological and environmental implications. Producing concrete with coal gangue aggregate is one of the green sustainable development requirements. This paper reviews the properties and preparation methods of Chinese gangue aggregate, studies the influence of gangue aggregate on concrete properties and the prediction model of gangue concrete, and summarizes the influence of modified materials on gangue concrete. The studies analyzed in this review show that different treatments influence the performance of coal gangue aggregate concrete. With the increase in the replacement ratio of coal gangue aggregate in concrete, the concrete workability and mechanical performance are reduced. Furthermore, the pore structure changes lead to decreased porosity, greatly affecting the durability. Coal gangue is not recommended for producing high-grade concretes. Nevertheless, pore structure can be improved by adding mineral admixtures, fibers, and admixtures to the coal gangue concrete. Hence, the working properties, mechanical properties, and durability of the concrete can be improved effectively, ensuring that coal gangue concrete meets engineering design requirements. Adding modified materials to coal gangue concrete is a viable future development direction.
The Grey Relation Entropy (GRE) theory is used to analyze the sensitive pore size that affects the compressive strength of concrete. The relationship between the strength and pore structure is revised based on the sensitivity coefficient. The revised model is used to calculate the compressive strength of concrete. In order to verify the validity of the proposed model, the calculated results are compared with experimental ones, showing satisfactory agreement with a larger correlation than existing methods.
In this study, the high-temperature test (i.e., temperature to 1000 °C) is conducted on 600 MPa seismic steel bars, and its residual mechanical properties and constitutive relations are investigated though three cooling rates, i.e., under air, furnace, and water-cooling conditions. Results show that three cooling methods have significant effects on the apparent characteristics of 600 MPa steel bars, when the heating temperature is greater than 600 °C. In addition, the ultimate and yield strength of steel bars have been significantly affected by different cooling methods, with increasing heating temperature. However, the elastic modulus is significantly not affected by temperature. Furthermore, the elongation rate after fracture and the total elongation rate at the maximum force do not change significantly, when the heating temperature is less than 650 °C. The elongation rate, after fracture, and the total elongation rate, at the maximum force, have different changes for three cooling methods. The degeneration of the stress–strain curves occurs when the heating temperature is high. The two-fold line, three-fold line, and Ramberg–Osgood models are developed based on the stress–strain curve characteristics of steel bars after cooling. The fire resistance of 600 MPa steel bars of reinforced concrete structure is analyzed, which provides a basis for post-disaster damage assessment, repair, and reinforcement of the building structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.