Huanglongbing (HLB) is a highly detrimental citrus disease associated with 'Candidatus Liberibacter asiaticus', a nonculturable alpha-proteobacterium. Characterization of the bacterial populations is important for development of disease management strategies. In this study, the 'Ca. L. asiaticus' populations in eight provinces in southern China where HLB is endemic were analyzed based on tandem repeat number (TRN) variations in a previously characterized genomic locus CLIBASIA_01645. Of the 224 HLB samples collected, 175 (78.3%) samples yielded single polymerase chain reaction (PCR) amplicons (the single amplicon group, SAG) and 49 (21.7%) samples produced multiple PCR amplicons (the multiple amplicon group, MAG). Variations in SAG are summarized by Nei's diversity index (H) and ratio of TRN ≤ 10/TRN > 10 genotypes (R10). Variations in the MAG are described by the percentage of occurrence (PMAG). At an orchard-level comparison, the 'Ca. L. asiaticus' population from a Guangdong orchard (n = 24) showed H = 0.50, R10 = 23, and PMAG = 0, significantly different from that of the non-Guangdong orchards in Yunnan (n = 23), H = 0.83, R10 = 2.3, and PMAG = 11.5, and in Hainan (n = 35), H = 0.88, R10 = 1.5, and PMAG = 16.7. In a region-level consideration, the Guangdong 'Ca. L. asiaticus' population (n = 78) was H = 0.77, R10 = 25, and PMAG = 1.3, whereas the non-Guangdong population (n = 84) was H = 0.91, R10 = 1.6, and PMAG = 26.9. Overall, significant differences were observed between the 'Ca. L. asiaticus' population from Guangdong Province and those from the other provinces. A strong aggregation of TRN = 6, 7, and 8 genotypes is characteristic to the 'Ca. L. asiaticus' population in Guangdong. Referenced to genome annotation, we propose that rearrangement of tandem repeats at locus CLIBASIA_01645 could be associated with bacterial environmental adaptation.
This study was conducted to evaluate the genetic diversity within and among the plants of four ancient tea gardens and two tableland tea gardens form Yunnan Province, China by AFLP technique. The percentage of polymorphic loci (P) of the plants from six tea gardens was 92.31%. The genetic diversity within the six gardens demonstrated by Nei cents genetic diversity (He) was estimated to be 0.1366, while Shannon indices (Ho) were 0.2323. The percentage of polymorphic loci of the four ancient tea populations was 45.55% on average, with a range of 36.44% (Mengsong) to 59.11% (Mengla). But the percentages of polymorphic loci of the plants from two tableland gardens were 13.77% (Yunkang 10) and 24.2% (Menghai Daye), respectively. There was a great genetic difference between ancient tea gardens and tableland tea gardens. The genetic diversity among the plants of the ancient tea garden was higher than those of the sexual tableland tea garden and the clone tableland tea garden based on P valve. The four ancient tea gardens and two tableland gardens could be differentiated with AFLP markers. The results show that AFLP marker is an effective tool in the discrimination of tea germplasm, as well as sundried green tea.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.