Background Since December 2019, the newly emerged SARS-CoV-2 virus continues to infect humans and many people died from severe Covid-19 during the last 2 years worldwide. Different approaches are being used for treatment of this infection and its consequences, but limited results have been achieved and new therapeutics are still needed. One of the most interesting biotherapeutics in this era are Nanobodies which have shown very promising results in recent researches. Scope of review Here, we have reviewed the potentials of Nanobodies in Covid-19 treatment. We have also discussed the properties of these biotherapeutics that make them very suitable for pulmonary drug delivery, which seems to be very important route of administration in this disease. Major conclusion Nanobodies with their special biological and biophysical characteristics and their resistance against harsh manufacturing condition, can be considered as promising, targeted biotherapeutics which can be administered by pulmonary delivery pharmaceutical systems against Covid-19. General significance Covid-19 has become a global problem during the last two years and with emerging mutant strains, prophylactic and therapeutic approaches are still highly needed. Nanobodies with their specific properties can be considered as valuable and promising candidates in Covid-19 therapy.
1. Repeated administration of psychostimulants and micro-opioid receptor agonists elicits a progressive enhancement of drug-induced behavioural responses, a phenomenon termed behavioural sensitization. These changes in behaviour may reflect plastic changes requiring regulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid (AMPA) receptor function. 2. In the present study, rats were treated for 7 days with saline or morphine (10 mg/kg). After a washout period of either 24 h or 7 days, locomotion, oral stereotypy and state-dependent memory in a passive avoidance test were measured in the presence or absence of 6-cyano-7-nitroquinoxaline-2,3-dione disodium salt (CNQX; 3 mg/kg), an AMPA receptor antagonist. In order to evaluate the mechanism underlying the behavioural responses, quantitative real-time reverse transcription-polymerase chain reaction was used to evaluate mRNA expression of the AMPA receptor subunits GluR2 and GluR3 in the striatum, prefrontal cortex, hippocampus, hypothalamus and amygdala of animals treated repeatedly with morphine. 3. The results indicate that repeated morphine treatment followed by 7 days (but not 24 h) washout produces behavioural sensitization, as determined by locomotion, oral stereotypy and state-dependent memory. Blockade of AMPA receptors with CNQX on the test day did not alter these behavioural responses. In addition, repeated morphine treatment followed by 7 days (but not 24 h) washout decreased GluR2 mRNA expression in both the amygdala (by 50%) and hippocampus (by 35%). Repeated morphine treatment did not alter GluR3 mRNA expression in any brain area assessed. 4. These data imply that AMPA receptors are involved in the development (but not expression) phase of behavioural sensitization. The decreases in GluR2 mRNA expression in the amygdala and hippocampus may result in the formation of calcium-permeable AMPA receptors, which are believed to play an important role in behavioural sensitization.
This study was designed to evaluate the effect of repeated morphine treatment on rat behavioral responses. In the genetic section, the mRNA expression of NMDA receptor subunits (NR1 and NR2A) was measured in certain areas of the male rat brain (striatum, prefrontal cortex, hippocampus, hypothalamus and amygdala). In the behavioral section, the effect of repeated morphine treatment on animal models such as locomotion, oral stereotypy, and state-dependent memory in a passive avoidance test was evaluated in the presence or absence of MK801 (NMDA receptor antagonist). Our results showed that chronic morphine treatment, followed by a 7-day (but not 24-hour) washout period, potentiated the effect of test doses of morphine, which is referred to as behavioral sensitization. Meanwhile, pretreatment of animals with MK801 (0.1 and 0.25 mg/kg), 30 min before a test dose of morphine (5 mg/kg), failed to attenuate the locomotion and oral stereotypy in the behavioral sensitization state. Interestingly, a higher dose of MK801 (0.25 mg/kg) decreased memory retrieval induced by morphine (2.5 mg/kg) in state-dependent memory. This effect may be due to the intrinsic motor enhancer property of higher doses of MK801, rather than the blockade of NMDA receptors. It can be concluded that MK801 does not affect morphine-induced behavioral sensitization in the expression phase. In the genetic section of the study, results of quantitative real-time RT-PCR clearly indicated that morphine sensitization increased the expression of NMDA receptor subunits mRNA in the amygdala (NR1 by 104% and NR2A by 85%), while the other areas of the brain were unaffected. Maenwhile, no change in the mRNA levels was observed in non-sensitized animals (chronic morphine treatment followed by a 24-hour washout period). In summary, the present study indicates that repeated morphine treatment followed by long-term (7-day washout) induces behavioral sensitization and causes a delayed increase in mRNA levels of NMDA receptor subunits in the rat amygdala. Meanwhile, it has previously been reported that the amygdala is involved in behavioral sensitization. Thus, it can be concluded that the increase in NMDA receptor expression is associated with morphine-induced behavioral sensitization.
Objective: One of the major goals of cancer treatment is the monitoring of chemotherapeutic protocols. Quantitative and comparative cytokine expression profiling could be reliable to be used for biomarkers in deadly and fast-growing cancers such as acute myeloid leukemia (AML). The present study aims to assess and further validate cytokines with probable effects on proliferation and maturation of blood cells in AML.Materials and Methods: Gene expression levels of IL-1β, IL-10, IL-8, TNF-α, and IFN-γ were analyzed before and after chemotherapy and after granulocyte colony-stimulating factor (G-CSF) therapy in 46 AML patients by an in-house quantitative comparative RT-PCR method.Results: Our findings indicated that although the gene expression level of TNF-α was almost constant in all 3 samples, IL-1β, IL-8, and IL-10 expression levels showed a decrease after chemotherapy and an increase after G-CSF therapy. On the other hand, the expression level of IFN-γ had a different pattern with an increase after chemotherapy and a decrease after G-CSF therapy. Conclusion: Taken together, the results of this study are in support of the idea that the analyzed cytokines could be useful biomarkers for AML treatment monitoring. However, further molecular epidemiological investigations are suggested to elaborate more cancer monitoring biomarkers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.