Introduction: Carbon nanotubes (CNTs) are novel candidates in nanotechnology with a variety of increasing applications in medicine and biology. Therefore the investigation of nanomaterials’ biocompatibility can be an important topic. The aim of present study was to investigate the CNTs impact on cardiac heart rate among rats. Methods: Electrocardiogram (ECG) signals were recorded before and after injection of CNTs on a group with six rats. The heart rate variability (HRV) analysis was used for signals analysis. The rhythm-to-rhythm (RR) intervals in HRV method were computed and features of signals in time and frequency domains were extracted before and after injection. Results: Results of the HRV analysis showed that CNTs increased the heart rate but generally these nanomaterials did not cause serious problem in autonomic nervous system (ANS) normal activities. Conclusion: Injection of CNTs in rats resulted in increase of heart rate. The reason of phenomenon is that multiwall CNTs may block potassium channels. The suppressed and inhibited IK and potassium channels lead to increase of heart rate.
We examined the biocompatibility of carbon nanotubes (CNTs) injected i.p. into rats (1 mg/kg body mass) by recording EEG from the frontal and occipital cortex and performing the water maze router test before and after such injection. For EEG, the energy and average power spectral density of wavelet coefficients in the β, α, and θ bands were considered the features. In the water maze router experiment, the distance, time, and speed of rats were investigated as behavioral factors. Comparison of EEG signals before and after injection showed that introduction of CNTs exerted no significant effect on electrophysiological brain indices. A comparison of behavioral factors before and after injection, however, showed that injections of CNTs increased the pacing distance and time to find the desired platform and decreased somewhat the speed in the water maze router experiment. A possible reason of this phenomenon is the possible influence of CNTs on ion fluxes in brain neurons.
The frame rate improvement is an essential issue in dynamic ultrasonic imaging for better displaying rapid heart movements. In this study, a new technique using the compressive sensing (CS) theory was introduced for the frame rate improvement of two-dimensional (2D) and three-dimensional (3D) dynamic ultrasonic imaging. In the suggested procedure, a fewer radio frequency (RF) lines were received. Subsequently, the CS theory by the recommended approach was used to reconstruct the nonacquired RF lines. The suggested process uses the temporal and spatial information in the neighborhood samples of the desired sample in RF frame sequences. We utilized the dictionary learning technique to construct the sparsifying over-complete dictionary. Here, we used the 2D in vivo carotid artery data and the 3D simulated echocardiography for the quality assessment of the suggested approach. According to the qualitative and quantitative results, reconstructions in the suggested approach are more precise, and the reconstruction errors are much lower than the conventional techniques. The tissues' structure in reconstructed videos by the suggested approach is preserved to be applicable for medical diagnosis goals. The frame rate can be improved by a factor of 10 with suitable quality for medical diagnosis goals. The implementation of the suggested approach does not require any more hardware or alternation in the devices' available hardware.The frame rate can be improved by only implementing effective programming on the ultrasound systems.
Synchronization of bioelectrical activities of neurons contributes to the initiation of epileptiform activities occurred during a seizure attack. Absence seizures are characterized by synchronous and symmetric 2.5-4 Hz spike-wave discharges in children under 15 years old. More than half of children with absence epilepsy suffer from cognitive, education, and learning difficulties. The amplitude ratio of the theta and alpha waves is a reliable indicator for measuring of learning difficulties in children. The aim of this study was to evaluate the effect of Land T-type voltage-dependent calcium channel blockers, verapamil and ethosuximide, on the amplitude of electroencephalogram (EEG) waves in WAG/Rij rats, a genetic animal model of absence epilepsy. Materials and Methods: 18 adult WAG/Rij rats in the age between 4 and 6 months were divided randomly into 3 groups. Using stereotaxic method, cannula was implanted in the peri-oral region of the primary somatosensory cortex for injection of drugs and recording electrodes were placed in the frontal and the occipital cortices. Electroencephalography was recorded 30 minutes before and one hour after drug injection. Results: The power of EEG sub-bands significantly decreased in the first 30 minutes after injection of verapamil and ethosuximide compared to the control group. Conclusion: Our data show that verapamil and ethosuximide can decrease the power of EEG sub-bands. However, they have not noticeable effect on theta to alpha ratio.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.