Identification of a novel class of potent and highly selective M(3) muscarinic antagonists is described. First, the structure-activity relationship in the cationic amine core of our previously reported triphenylpropionamide class of M(3) selective antagonists was explored by a small diamine library constructed in solid phase. This led to the identification of M(3) antagonists with a novel piperidine pharmacophore and significantly improved subtype selectivity from a previously reported class. Successive modification on the terminal triphenylpropionamide part of the newly identified class gave 14a as a potent M(3) selective antagonist that had >100-fold selectivity versus the M(1), M(2), M(4), and M(5) receptors (M(3): K(i) = 0.30 nM, M(1)/M(3) = 570-fold, M(2)/M(3) = 1600-fold, M(4)/M(3) = 140-fold, M(5)/M(3) = 12000-fold). The possible rationale for its extraordinarily higher subtype selectivity than reported M(3) antagonists was hypothesized by sequence alignment of multiple muscarinic receptors and a computational docking of 14a into transmembrane domains of M(3) receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.