The motive of work was to develop a multi-walled carbon nanoplatform through facile method for transportation of potential anticancer drug doxorubicin (DOX). Folic acid (FA)-ethylene diamine (EDA) anchored and acid functionalised MWCNTs were covalently grafted with DOX via π-π stacking interaction. The resultant composite was corroborated by 1 H NMR, FTIR, XRD, EDX, SEM, and DSC study. The drug entrapment efficiency of FA-conjugated MWCNT was found high and stability study revealed its suitability in biological system. FA-EDA-MWCNTs-DOX conjugate demonstrated a significant in vitro anticancer activity on human breast cancer MCF-7 cells. MTT study revealed the lesser cytotoxicity of folate-conjugated MWCNTs. The obtained results demonstrated the targeting specificity of FA-conjugate via overexpressed folate receptor deemed greater scientific value to overcome multidrug protection during cancer therapy. The proposed strategy is a gentle contribution towards development of biocompatible targeted drug delivery and offers potential to address the current challenges in cancer therapy.
Herein the authors present the synthesis of surface functionalised mesoporous alumina (MeAl) for textural characterisation by a simplified sol-gel method obtained by using hexadecyltrimethylammonium bromide as a template. Etoricoxib (ETOX) was used as a model drug for the study. Alumina supported mesoporous material containing drug was characterised using instrumental technique namely Brunauer-Emmett-Teller surface area, Fourier transform-infrared, differential scanning calorimetry, transmission electron microscopy, X-ray diffraction, and field emission scanning electron microscopy. Diffusion study using a dialysis bag method used to check the release pattern of ETOX-loaded-MeAl. Results of characterisation study revealed the successful surface functionalisation of the drug on nanocomposite. The IC 50 value obtained from cell viability study demonstrated the non-toxic behaviour of synthesised drug-loaded mesoporous alumina up to the tested concentration range. The present work has demonstrated that synthesised MeAl showed excellent stability with an expanded surface area suitable for carrier material for drug delivery system.
Two simple, precise and economical UV spectrophotometric methods have been developed for the simultaneous estimation of Dapagliflozin and Metformin in bulk drug and marketed formulation. In simultaneous equation method, 223 nm (λmax of DAPA) and 233 nm (λmax of MET) analytical wavelengths were selected and analysis were carried out. In area under curve method, 220-229 nm (λmax of DAPA) and 229-236 nm (λmax of MET) wavelengths were selected and analysis were carried out. The method was validated using various parameters according to ICH guidelines. The low relative standard deviation values indicate good precision and high recovery values indicate accuracy of the proposed method. Assay results were in good agreement with label claim.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.