High solar radiation has been recognised as a contributing factor to exertional heat-related illness in individuals exercising outdoors in the heat. Although solar radiation intensity has been known to have similar time-of-day variation as body temperature, the relationship between fluctuations in solar radiation associated with diurnal change in the angle of sunlight and thermoregulatory responses in individuals exercising outdoors in a hot environment remains largely unknown. The present study therefore investigated the time-of-day effects of variations in solar radiation associated with changing solar elevation angle on thermoregulatory responses during moderate-intensity outdoor exercise in the heat of summer. Eight healthy, high school baseball players, heat-acclimatised male volunteers completed a 3-h outdoor baseball trainings under the clear sky in the heat. The trainings were commenced at 0900 h in AM trial and at 1600 h in PM trial each on a separate day. Solar radiation and solar elevation angle during exercise continued to increase in AM (672-1107 W/m and 44-69°) and decrease in PM (717-0 W/m and 34-0°) and were higher on AM than on PM (both P < 0.001). Although ambient temperature (AM 32-36°C, PM 36-30°C) and wet-bulb globe temperature (AM 31-33°C, PM 34-27°C) also continued to increase in AM and decrease in PM, there were no differences between trials in these (both P > 0.05). Tympanic temperature measured by an infrared tympanic thermometer and mean skin temperature were higher in AM than PM at 120 and 180 min (P < 0.05). Skin temperature was higher in AM than PM at the upper arm and thigh at 120 min (P < 0.05) and at the calf at 120 and 180 min (both P < 0.05). Body heat gain from the sun was greater during exercise in AM than PM (P < 0.0001), at 0-60 min in PM than AM (P < 0.0001) and at 120-180 min in AM than PM (P < 0.0001). Dry heat loss during exercise was greater at 0-60 min (P < 0.0001), and lower at 60-120 min (P < 0.05) and 120-180 min (P < 0.0001) in AM than PM. Evaporative heat loss during exercise was greater in PM than AM at 120-180 min (P < 0.0001). Total (dry + evaporation) heat loss at the skin was greater during exercise in PM than AM (P < 0.0001), at 0-60 min in AM than PM (P < 0.0001) and at 60-120 and 120-180 min in PM than AM (P < 0.05 and 0.0001). Heart rate at 120-150 min was also higher in AM than PM (P < 0.05). Neither perceived thermal sensation nor rating of perceived exertion was different between trials (both P > 0.05). The current study demonstrates a greater thermoregulatory strain in the morning than in the afternoon resulting from a higher body temperature and heart rate in relation to an increase in environmental heat stress with rising solar radiation and solar elevation angle during moderate-intensity outdoor exercise in the heat. This response is associated with a lesser net heat loss at the skin and a greater body heat gain from the sun in the morning compared with the afternoon.
Otani, H, Goto, T, Goto, H, Hosokawa, Y, and Shirato, M. Solar radiation exposure has diurnal effects on thermoregulatory responses during high-intensity exercise in the heat outdoors. J Strength Cond Res 33(10): 2608–2615, 2019—This study investigated the diurnal effects of variations in solar radiation associated with changing solar elevation angle on thermoregulatory responses during high-intensity exercise in the heat outdoors. Ten male high school soccer players completed two 2-hour soccer training sessions under a clear sky in the heat of summer. These sessions were commenced at 0900 hours (AM) and 1600 hours (PM) on separate days. Solar radiation and elevation angle were higher in AM (820–1,070 W·m−2 and 45–69°) than PM (620–110 W·m−2 and 34–10°: both p < 0.001). Neither ambient temperature (AM 29–32° C; PM 31–31° C) nor wet-bulb globe temperature was different between trials. Although mean skin temperature was not different between trials, infrared tympanic temperature was higher at the end of exercise in AM than PM (p < 0.001). Heart rate (p < 0.01) and body heat gain from the sun (p < 0.001) were greater during exercise in AM than PM. Dry heat loss was smaller, but evaporative heat loss was greater in AM than PM (both p < 0.001). Thermal sensation and rating of perceived exertion were similar between trials, but GPS measurements showed a less total distance and distance covered by walking, jogging, and running in AM than PM (p < 0.01). This study demonstrates a greater thermoregulatory strain in AM than PM during 2-hour high-intensity soccer training in the heat under a clear sky. This observation is accompanied by a progressive increase in environmental heat stress with rising solar radiation and elevation angle in AM and a greater body heat gain from the sun in AM compared with PM.
BackgroundThe purpose of this study was to examine the effects of combined β-hydroxy-β-methylbutyrate (HMB) and whey protein ingestion on muscle strength and damage following a single bout of eccentric exercise.MethodsEighteen untrained male subjects were assigned to HMB and Whey protein (HMB + Whey; 3 g/day HMB and 36.6 g/day whey protein, n = 6), HMB (3 g/day, n = 6), or whey protein (36.6 g/day, n = 6) groups. Ingestion commenced 7 days before non-dominant elbow flexor eccentric exercise (30 deg/sec, 6 reps × 7 sets) and continued until 4 days post-exercise. The maximal isometric strength, muscle soreness, plasma creatine kinase (CK), lactate dehydrogenase (LDH) were assessed pre-exercise, and at 1, 2, 3, and 5 days after exercise.ResultsThe change scores of maximal isometric strength significantly decreased at day 1, 2, and 5 in the whey protein group compared to pre value and that in HMB + Whey protein and HMB groups decreased at day 1 and 5. The muscle soreness significantly increased in the whey and HMB + Whey protein groups at day 3 compared to pre value (p < 0.05). CK and LDH significantly increased (time effect: p < 0.05) after exercise. However, all data were not significant difference among the groups.ConclusionsThese results suggest that ingestion of combined HMB and whey protein does not have a role to inhibit muscle strength loss and soreness, and decrease in muscle damage markers after eccentric exercise in comparison with HMB and whey protein alone.
Purpose The time-of-day variations in environmental heat stress have been known to affect thermoregulatory responses and the risk of exertional heat-related illness during outdoor exercise in the heat. However, such effect and risk are still needed to be examined during indoor sports/exercises. The current study investigated the diurnal relationships between thermoregulatory strain and environmental heat stress during regular judo training in a judo training facility without air conditioning on a clear day in the heat of summer. Methods Eight male high school judokas completed two 2.5-h indoor judo training sessions. The sessions were commenced at 09:00 h (AM) and 16:00 h (PM) on separate days. Results During the sessions, indoor and outdoor heat stress progressively increased in AM but decreased in PM, and indoor heat stress was less in AM than PM (mean ambient temperature: AM 32.7±0.4°C; PM 34.4±1.0°C, P<0.01). Mean skin temperature was higher in AM than PM (P<0.05), despite greater dry and evaporative heat losses in AM than PM (P<0.001). Infrared tympanic temperature, heart rate and thermal sensation demonstrated a trial by time interaction (P<0.001) with no differences at any time point between trials, showing relatively higher responses in these variables in PM compared to AM during the early stages of training and in AM compared to PM during the later stages of training. There were no differences between trials in body mass loss and rating of perceived exertion. Conclusions This study indicates a greater thermoregulatory strain in the morning from 09:00 h than the late afternoon from 16:00 h during 2.5-h regular judo training in no air conditioning facility on a clear day in the heat of summer. This observation is associated with a progressive increase in indoor and outdoor heat stress in the morning, despite a less indoor heat stress in the morning than the afternoon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.