A autonomous vehicle requires improved and robust perception systems than conventional perception systems of intelligent vehicles. In particular, single sensor based perception systems have been widely studied by using cameras and laser radar sensors which are the most representative sensors for perception by providing object information such as distance information and object features. The distance information of the laser radar sensor is used for road environment perception of road structures, vehicles, and pedestrians. The image information of the camera is used for visual recognition such as lanes, crosswalks, and traffic signs. However, single sensor based perception systems suffer from false positives and true negatives which are caused by sensor limitations and road environments. Accordingly, information fusion systems are essentially required to ensure the robustness and stability of perception systems in harsh environments. This paper describes a perception system for autonomous vehicles, which performs information fusion to recognize road environments. Particularly, vision and laser radar sensors are fused together to detect lanes, crosswalks, and obstacles. The proposed perception system was validated on various roads and environmental conditions with an autonomous vehicle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.