Quantitative measurements of diffusion can provide important information about how proteins and lipids interact with their environment within the cell and the effective size of the diffusing species. Confocal FRAP is one of the most widely accessible approaches to measure protein and lipid diffusion in living cells. However, straightforward approaches to quantify confocal FRAP measurements in terms of absolute diffusion coefficients are currently lacking. Here, we report a simplified equation that can be used to extract diffusion coefficients from confocal FRAP data using the half time of recovery and effective bleach radius for a circular bleach region, and validate this equation for a series of fluorescently labeled soluble and membrane-bound proteins and lipids. We show that using this approach, diffusion coefficients ranging over three orders of magnitude can be obtained from confocal FRAP measurements performed under standard imaging conditions, highlighting its broad applicability.
Protein inactivation by reactive oxygen species (ROS) such as singlet oxygen ((1)O2) and superoxide radical (O2(•-)) is considered to trigger cell death pathways associated with protein dysfunction; however, the detailed mechanisms and direct involvement in photodynamic therapy (PDT) have not been revealed. Herein, we report Ir(III) complexes designed for ROS generation through a rational strategy to investigate protein modifications by ROS. The Ir(III) complexes are effective as PDT agents at low concentrations with low-energy irradiation (≤ 1 J cm(-2)) because of the relatively high (1)O2 quantum yield (> 0.78), even with two-photon activation. Furthermore, two types of protein modifications (protein oxidation and photo-cross-linking) involved in PDT were characterized by mass spectrometry. These modifications were generated primarily in the endoplasmic reticulum and mitochondria, producing a significant effect for cancer cell death. Consequently, we present a plausible biologically applicable PDT modality that utilizes rationally designed photoactivatable Ir(III) complexes.
Protein kinase RNA-activated (PKR) induces immune response by sensing viral double-stranded RNAs (dsRNAs). However, growing evidence suggests that PKR can also be activated by endogenously expressed dsRNAs. Here, we capture these dsRNAs by formaldehyde-mediated crosslinking and immunoprecipitation sequencing and find that various noncoding RNAs interact with PKR. Surprisingly, the majority of the PKR-interacting RNA repertoire is occupied by mitochondrial RNAs (mtRNAs). MtRNAs can form intermolecular dsRNAs owing to bidirectional transcription of the mitochondrial genome and regulate PKR and eIF2α phosphorylation to control cell signaling and translation. Moreover, PKR activation by mtRNAs is counteracted by PKR phosphatases, disruption of which causes apoptosis from PKR overactivation even in uninfected cells. Our work unveils dynamic regulation of PKR even without infection and establishes PKR as a sensor for nuclear and mitochondrial signaling cues in regulating cellular metabolism.
SUMMARY
The glycosphingolipid GM1 binds cholera toxin (CT) on host cells and carries it retrograde from the plasma membrane (PM) through endosomes, the trans-Golgi (TGN), and the endoplasmic reticulum (ER) to induce toxicity. To elucidate how a membrane lipid can specify trafficking in these pathways, we synthesized GM1 isoforms with alternate ceramide domains and imaged their trafficking in live cells. Only GM1 with unsaturated acyl chains sorted efficiently from PM to TGN and ER. Toxin binding, which effectively crosslinks GM1 lipids, was dispensable, but membrane cholesterol and the lipid raft-associated proteins actin and flotillin were required. The results implicate a protein-dependent mechanism of lipid-sorting by ceramide structure and provide a molecular explanation for the diversity and specificity of retrograde trafficking by CT in host cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.