The purpose of this paper is a quantification of displacement parameters used in the imaging of brain tissue endogenous motion using ultrasonic radiofrequency (RF) signals. In a preclinical study, an ultrasonic diagnostic system with RF output was equipped with dedicated signal processing software and subject head–ultrasonic transducer stabilization. This allowed the use of RF scanning frames for the calculation of micrometer-range displacements, excluding sonographer-induced motions. Analysis of quantitative displacement estimates in dynamical phantom experiments showed that displacements of 55 µm down to 2 µm were quantified as confident according to Pearson correlation between signal fragments (minimum p ≤ 0.001). The same algorithm and scanning hardware were used in experiments and clinical imaging which allows translating phantom results to Alzheimer’s disease patients and healthy elderly subjects as examples. The confident quantitative displacement waveforms of six in vivo heart-cycle episodes ranged from 8 µm up to 263 µm (Pearson correlation p ≤ 0.01). Displacement time sequences showed promising possibilities to evaluate the morphology of endogenous displacement signals at each point of the scanning plane, while displacement maps—regional distribution of displacement parameters—were essential for tissue characterization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.