Grad-div stabilization is a classical remedy in conforming mixed finite element methods for incompressible flow problems, for mitigating velocity errors that are sometimes called poor mass conservation. Such errors arise due to the relaxation of the divergence constraint in classical mixed methods, and are excited whenever the spatial discretization has to deal with comparably large and complicated pressures. In this contribution, an analogue of grad-div stabilization for Discontinuous Galerkin methods is studied. Here, the key is the penalization of the jumps of the normal velocities over facets of the triangulation, which controls the measure-valued part of the distributional divergence of the discrete velocity solution. Our contribution is twofold: first, we characterize the limit for arbitrarily large penalization parameters, which shows that the stabilized nonconforming Discontinuous Galerkin methods remain robust and accurate in this limit; second, we extend these ideas to the case of non-simplicial meshes; here, broken grad-div stabilization must be used in addition to the normal velocity jump penalization, in order to get the desired pressure robustness effect. The analysis is performed for the Stokes equations, and more complex flows and Crouzeix-Raviart elements are considered in numerical examples that also show the relevance of the theory in practical settings.
Highlights• This paper focuses on velocity-vorticity-temperature (VVT) model of the Boussinesq equations.• A second order time accurate finite element method is proposed for solving these equations.• Unconditional stability with respect to time step is proven.
This paper proposes, analyzes and tests high order algebraic splitting methods for magnetohydrodynamic (MHD) flows. The main idea is to apply, at each time step, Yosida-type algebraic splitting to a block saddle point problem that arises from a particular incremental formulation of MHD. By doing so, we dramatically reduce the complexity of the nonsymmetric block Schur complement by decoupling it into two Stokes-type Schur complements, each of which is symmetric positive definite and also is the same at each time step. We prove the splitting is O(∆t 3) accurate, and if used together with (block-)pressure correction, is fourth order. A full analysis of the solver is given, both as a linear algebraic approximation, but also in a finite element context that uses the natural spatial norms. Numerical tests are given to illustrate the theory and show the effectiveness of the method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.