Background Immune system activation is frequently reported in patients with Alzheimer's disease (AD). However, it remains unknown whether this is a cause, a consequence, or an epiphenomenon of brain degeneration. Objective The present study examines whether immunological abnormalities occur in a well-established murine AD model and if so, how they relate temporally to behavioral deficits and neuropathology. Methods A broad battery of tests was employed to assess behavioral performance and autoimmune/inflammatory markers in 3xTg-AD (AD) mice and wild type controls from 1.5 to 12 months of age. Results Aged AD mice displayed severe manifestations of systemic autoimmune/inflammatory disease, as evidenced by splenomegaly, hepatomegaly, elevated serum levels of anti-nuclear/anti-dsDNA antibodies, low hematocrit, and increased number of double-negative T splenocytes. However, anxiety-related behavior and altered spleen function were evident as early as 2 months of age, thus preceding typical AD-like brain pathology. Moreover, AD mice showed altered olfaction and impaired “cognitive” flexibility in the first 6 months of life, suggesting mild cognitive impairment-like manifestations before general learning/memory impairments emerged at an older age. Interestingly, all of these features were present in 3xTg-AD mice prior to significant amyloid-β or tau pathology. Conclusion The results indicate that behavioral deficits in AD mice develop in parallel with systemic autoimmune/inflammatory disease. These changes antedate AD-like neuropathology, thus supporting a causal link between autoimmunity and aberrant behavior. Consequently, 3xTg-AD mice may be a useful model in elucidating the role of immune system in the etiology of AD.
The triple-transgenic (3xTg-AD) mouse strain is a valuable model of Alzheimer's disease (AD) because it develops both amyloid-β (Aβ) and tau brain pathology. However, 1-year-old 3xTg-AD males no longer show plaques and tangles, yet early in life they exhibit diverse signs of systemic autoimmunity. The current study aimed to address whether females, which exhibit more severe plaque/tangle pathology at 1 year of age, show similar autoimmune phenomena and if so, whether these immunological changes coincide with prodromal markers of AD pathology, markers of learning and memory formation, and epigenetic markers of neurodegenerative disease. Six-month-old 3xTg-AD and wild-type mice of both sexes were examined for T-cell phenotype (CD3+, CD8+, and CD4+ populations), serological measures (autoantibodies, hematocrit), soluble tau/phospho-tau and Aβ levels, brain-derived neurotrophic factor (BDNF) expression, and expression of histone H2A variants. Although no significant group differences were seen in tau/phospho-tau levels, 3xTg-AD mice had lower brain mass and showed increased levels of soluble Aβ and downregulation of BDNF expression in the cortex. Splenomegaly, depleted CD+ T-splenocytes, increased autoantibody levels and low hematocrit were more pronounced in 3xTg-AD males than in females. Diseased mice also failed to exhibit sex-specific changes in histone H2A variant expression shown by wild-type mice, implicating altered nucleosome composition in these immune differences. Our study reveals that the current 3xTg-AD model is characterized by systemic autoimmunity that is worse in males, as well as transcriptional changes in epigenetic factors of unknown origin. Given the previously observed lack of plaque/tangle pathology in 1-year-old males, an early, sex-dependent autoimmune mechanism that interferes with the formation and/or deposition of aggregated protein species is hypothesized. These results suggest that more attention should be given to studying sex-dependent differences in the immunological profiles of human patients.
As pathogenic Parkin mutations result in the defective clearance of damaged mitochondria, Parkin-dependent mitophagy is thought to be protective against the dopaminergic neurodegeneration observed in Parkinson’s disease. Recent studies, however, have demonstrated that Parkin can promote cell death in the context of severe mitochondrial damage by degrading the pro-survival Bcl-2 family member, Mcl-1. Therefore, Parkin may act as a ‘switch’ that can shift the balance between protective or pro-death pathways depending on the degree of mitochondrial damage. Here, we report that the Parkin interacting protein, Bcl-2-associated athanogene 5 (BAG5), impairs mitophagy by suppressing Parkin recruitment to damaged mitochondria and reducing the movement of damaged mitochondria into the lysosomes. BAG5 also enhanced Parkin-mediated Mcl-1 degradation and cell death following severe mitochondrial insult. These results suggest that BAG5 may regulate the bi-modal activity of Parkin, promoting cell death by suppressing Parkin-dependent mitophagy and enhancing Parkin-mediated Mcl-1 degradation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.