Spleen Tyrosine Kinase (SYK) is a critical immune signaling molecule and therapeutic target. We identified damaging monoallelic
SYK
variants in six patients with immune deficiency, systemic disease such as colitis, arthritis and skin inflammation, and diffuse large B cell lymphomas. The SYK variants increased phosphorylation and enhanced downstream signaling indicating gain-of-function. A knock-in (SYK
S544Y
) mouse model of a patient variant (p.S550Y) recapitulated aspects of the human disease that could be partially treated with a SYK inhibitor or transplantation of bone marrow from wildtype mice. Our studies demonstrate that SYK gain-of-function variants result in a potentially treatable form of inflammatory disease.
Inflammatory bowel diseases (IBD) comprise a distinct set of clinical symptoms resulting from chronic or relapsing immune activation and corresponding inflammation within the gastrointestinal (GI) tract. Diverse genetic mutations, encoding important aspects of innate immunity and mucosal homeostasis, combine with environmental triggers to create inappropriate, sustained inflammatory responses. Recently, significant advances have been made in understanding the interplay of the intestinal epithelium, mucosal immune system, and commensal bacteria as a foundation of the pathogenesis of inflammatory bowel disease. Complex interactions between specialized intestinal epithelial cells and mucosal immune cells determine different outcomes based on the environmental input: the development of tolerance in the presence of commensal bacterial or the promotion of inflammation upon recognition of pathogenic organisms. This article reviews key genetic abnormalities involved in inflammatory and homeostatic pathways that enhance susceptibility to immune dysregulation and combine with environmental triggers to trigger the development of chronic intestinal inflammation and IBD.
The IL28B gene is associated with spontaneous or treatment-induced HCV viral clearance. However, the mechanism by which the IL28B single nucleotide polymorphism (SNP) affects the extra-hepatic HCV immune responses and its relationship to HCV pathogenesis have not been thoroughly investigated. To examine the mechanism by which IL28B affects HCV clearance. Forty Egyptian patients with chronic HCV infection receiving an Interferon/ribavirin treatment regimen were enrolled into this study. There were two groups: non-responders (NR; n = 20) and sustained virologic responders (SVR; n = 20). The initial plasma HCV viral loads prior to treatment and IL28B genotypes were determined by quantitative RT-PCR and sequencing, respectively. Liver biopsies were examined to determine the inflammatory score and the stage of fibrosis. Colonic regulatory T cell (Treg) frequency was estimated by immunohistochemistry. No significant association between IL28B genotypes and response to therapy was identified, despite an odds ratio of 3.4 to have the TT genotype in NR compared to SVR (95 % confidence interval 0.3–35.3, p = 0.3). Patients with the TT-IL28Brs12979860 genotype (unfavorable genotype) have significantly higher frequencies of colonic Treg compared to the CT (p = 0.04) and CC (p = 0.03) genotypes. The frequency of colonic Treg cells in HCV-infected patients had a strong association with the IL-28B genotype and may have a significant impact on HCV clearance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.