The present study aimed to evaluate the effects of paeoniflorin on insulin resistance and hepatic steatosis induced by fructose. Male Sprague-Dawley rats were fed 20% fructose drink for eight weeks. The insulin sensitivity, serum lipid profiles, and hepatic lipids contents were measured. The results showed that paeoniflorin significantly decreased serum insulin and glucagon levels, improved insulin sensitivity and serum lipids profiles, and alleviated hepatic steatosis in fructose-fed rats. Moreover, paeoniflorin enhanced the phosphorylation level of AMP-activated protein kinase (AMPK) and protein kinase B (PKB/AKT) and inhibited the phosphorylation of acetyl coenzyme A carboxylase (ACC)1 in liver. Paeoniflorin also increased the hepatic carnitine palmitoyltransferase (CPT)-1 mRNA and protein expression and decreased the mRNA expression of sterol regulatory element-binding protein (SREBP)1c, stearyl coenzyme A decarboxylase (SCD)-1 and fatty acid synthetase (FAS). Furthermore, we found that paeoniflorin significantly increased the heptatic protein expression of tumor suppressor serine/threonine kinase (LKB)1 but not Ca2+/CaM-dependent protein kinase kinase (CaMKK)β. These results suggest that the protective effects of paeoniflorin might be involved in the activation of LKB1/AMPK and insulin signaling, which resulted in the inhibition of lipogenesis, as well as the activation of β-oxidation and glycogenesis, thus ameliorated the insulin resistance and hepatic steatosis. The present study may provide evidence for the beneficial effects of paeoniflorin in the treatment of insulin resistance and non-alcoholic fatty liver.
The arcuate nucleus (ARC) in the basal of hypothalamus plays an important role in appetite regulation and energy balance. We sought to investigate the central neuroendocrine mechanism of appetite decrease and weight loss under chronic stress by observing the regulatory effects of Xiaoyaosan decoction in the expression of leptin receptor (ob-R) and neuropeptide Y (NPY) in the ARC. Our results showed that bodyweight and food intake of rats in the 21-day stress group increased slower than those of the normal group. Higher contents of Leptin and ob-R were noted in the 21-day stress group compared with control rats, while NPY expression was not statistically different. Xiaoyaosan powder can significantly downregulate the contents of leptin and ob-R in the hypothalamus of stressed rats. These findings suggest that increase of ob-R expression in the ARC is possibly one key central neuroendocrine change for the somatic discomfort. Weight loss and decreased food intake in rats caused by the binding of leptin to ob-R in hypothalamus do not appear to utilize the NPY pathway. This study also suggests that ob-R in the ARC may act as the target of Xiaoyaosan in regulating the symptoms such as appetite decrease and bodyweight loss under chronic stress.
ObjectiveThis study systematically investigated the effect of chronic stress on the hippocampus and its damage mechanism at the whole genome level.MethodsThe rat whole genome expression chips (Illumina) were used to detect gene expression differences in the hippocampus of rats subjected to chronic immobilization stress (daily immobilization stress for 3 h, for 7 or 21 days). The hippocampus gene expression profile was studied through gene ontology and signal pathway analyses using bioinformatics. A differentially expressed transcription regulation network was also established. Real-time quantitative polymerase chain reaction (RT-PCR) was used to verify the microarray results and determine expression of the Gabra1, Fadd, Crhr2, and Cdk6 genes in the hippocampal tissues.ResultsCompared to the control group, 602 differentially expressed genes were detected in the hippocampus of rats subjected to stress for 7 days, while 566 differentially expressed genes were expressed in the animals experiencing stress for 21 days. The stress significantly inhibited the primary immune system functions of the hippocampus in animals subjected to stress for both 7 and 21 days. Immobilization activated the extracellular matrix receptor interaction pathway after 7 day exposure to stress and the cytokine-cytokine receptor interaction pathway. The enhanced collagen synthesis capacity of the hippocampal tissue was the core molecular event of the stress regulation network in the 7-day group, while the inhibition of hippocampal cell growth was the core molecular event in the 21-day group. For the Gabra1, Fadd, Crhr2, and Cdk6 genes, RT-PCR results were nearly in line with gene chip assay results.ConclusionDuring the 7-day and 21-day stress processes, the combined action of polygenic, multilevel, and multi-signal pathways leads to the disorder of the immunologic functions of the hippocampus, hippocampal apoptosis, and proliferation disequilibrium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.