This work presents polymer photovoltaic devices based on poly(3-hexylthiophene) (P3HT) and TiO2 nanorod hybrid bulk heterojunctions. Interface modification of a TiO2 nanorod surface is conducted to yield a very promising device performance of 2.20% with a short circuit current density (J(sc)) of 4.33 mA/cm2, an open circuit voltage (V(oc)) of 0.78 V, and a fill factor (FF) of 0.65 under simulated A.M. 1.5 illumination (100 mW/cm2). The suppression of recombination at P3HT/TiO2 nanorod interfaces by the attachment of effective ligand molecules substantially improves device performance. The correlation between surface photovoltage and hybrid morphology is revealed by scanning Kelvin probe microscopy. The proposed method provides a new route for fabricating low-cost, environmentally friendly polymer/inorganic hybrid bulk heterojunction photovoltaic devices.
HfO 2 , a simple binary oxide, holds ultra-scalable ferroelectricity integrable into silicon technology. Polar orthorhombic (Pbc2 1 ) form in ultra-thin-films ascribes as the plausible rootcause of the astonishing ferroelectricity, which has thought not attainable in bulk crystals.Though, perplexities remain primarily due to the polymorphic nature and the characterization challenges at small-length scales. Herein, utilizing a state-of-the-art Laser-Diode-heated Floating Zone technique, we report ferroelectricity in bulk singlecrystalline HfO 2 :Y as well as the presence of anti-polar Pbca phase at different Y concentrations. Neutron diffraction and atomic imaging demonstrate (anti-)polar crystallographic signatures and abundant 90 o /180 o ferroelectric domains in addition to the switchable polarization with little wake-up effects. Density-functional theory calculations suggest that the Yttrium doping and rapid cooling are the key factors for the desired phase. Our observations provide new insights into the polymorphic nature and phase controlling of HfO 2 , remove the upper size limit for ferroelectricity, and also pave a new road toward the next-generation ferroelectric devices.
Molecular engineering of tetraazapentacene with different numbers of fluorine and chlorine substituents fine-tunes the frontier molecular orbitals, molecular vibrations, and π-π stacking for n-type organic semiconductors. Among the six halogenated tetraazapentacenes studied herein, the tetrachloro derivative (4Cl-TAP) in solution-processed thin-film transistors exhibits electron mobility of 14.9 ± 4.9 cm V s with a maximum value of 27.8 cm V s , which sets a new record for n-channel organic field-effect transistors. Computational studies on the basis of crystal structures shed light on the structure-property relationships for organic semiconductors. First, chlorine substituents slightly decrease the reorganization energy of the tetraazapentacene whereas fluorine substituents increase the reorganization energy as a result of fine-tuning molecular vibrations. Second, the electron transfer integral is very sensitive to subtle changes in the 2D π-stacking with brickwork arrangement. The unprecedentedly high electron mobility of 4Cl-TAP is attributed to the reduced reorganization energy and enhanced electron transfer integral as a result of modification of tetraazapentacene with four chlorine substituents.
The expensive and unstable organic hole transport layer (HTL) is one of the crucial problems that hampers the wide application of perovskite solar cells.Here, an MAPbI 3 -(BA) 2 (MA) nÀ1 Pb n I 3n+1 3D-2D perovskite-perovskite planar heterojunction (PPPH) through a facile BAI and MAPbI 3 interfacial ion exchange process was conducted. A graded band structure was formed for efficient charge separation, and the conductivity of the 2D perovskite can be tuned by extrinsic FA incorporation, which provides effective conducting channels for holes, making the modified 2D perovskite layer a promising and stable HTL. Optimized solar cells based on 3D-2D PPPH showed a champion power conversion efficiency (PCE) of 13.15% initially and 16.13% after thermal aging, and could maintain 71% output for 50 days under 65% humidity, and 74% for 30 days under 85 C, without encapsulation. This work points to realize low cost and ambient compatible PPPH solar cells with high PCE and robust stability.
Van der Waals heterobilayers of transition metal dichalcogenides with spin–valley coupling of carriers in different layers have emerged as a new platform for exploring spin/valleytronic applications. The interlayer coupling was predicted to exhibit subtle changes with the interlayer atomic registry. Manually stacked heterobilayers, however, are incommensurate with the inevitable interlayer twist and/or lattice mismatch, where the properties associated with atomic registry are difficult to access by optical means. Here, we unveil the distinct polarization properties of valley-specific interlayer excitons using epitaxially grown, commensurate WSe2/MoSe2 heterobilayers with well-defined (AA and AB) atomic registry. We observe circularly polarized photoluminescence from interlayer excitons, but with a helicity opposite to the optical excitation. The negative circular polarization arises from the quantum interference imposed by interlayer atomic registry, giving rise to distinct polarization selection rules for interlayer excitons. Using selective excitation schemes, we demonstrate the optical addressability for interlayer excitons with different valley configurations and polarization helicities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.