HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Sphingosine 1-phosphate (S1P) is a pleiotropic lipid mediator involved in numerous cellular and physiological functions. Notable among these are cell survival and migration as well as lymphocyte trafficking. S1P, which exerts its effects via five G protein coupled receptors (S1P1-5), is formed by the action of two sphingosine kinases (SphKs). While SphK1 is the more intensively studied isotype, SphK2 is unique in it nuclear localization and has been reported to oppose some of the actions ascribed to SphK1. While several scaffolds of SphK1 inhibitors have been described, there is a scarcity of selective SphK2 inhibitors that are necessary to evaluate the downstream effects of inhibition of this isotype. Herein we report a cationic amphiphilic small molecule that is a selective SphK2 inhibitor. In the course of characterizing this compound in wild type and SphK null mice we discovered that administration of the inhibitor to wild type mice resulted in a rapid increase in blood S1P, which is in contrast to our SphK1 inhibitor that drives circulating S1P levels down. Using a cohort of F2 hybrid mice, we confirmed, compared to wild type mice, that circulating S1P levels were higher in SphK2 null mice and lower in SphK1 null mice. Thus both SphK1 and SphK2 inhibitors recapitulate the blood S1P levels observed in the corresponding null mice. Moreover, circulating S1P levels mirror SphK2 inhibitor levels providing a convenient biomarker of target engagement.
Sphingosine 1-phosphate (S1P) is a pleiotropic signaling molecule that acts as a ligand for five G-protein coupled receptors (S1P1–5) whose downstream effects are implicated in a variety of important pathologies including sickle cell disease, cancer, inflammation, and fibrosis. The synthesis of S1P is catalyzed by sphingosine kinase (SphK) isoforms 1 and 2, and hence, inhibitors of this phosphorylation step are pivotal in understanding the physiological functions of SphKs. To date, SphK1 and 2 inhibitors with the potency, selectivity, and in vivo stability necessary to determine the potential of these kinases as therapeutic targets are lacking. Herein, we report the design, synthesis, and structure–activity relationship studies of guanidine-based SphK inhibitors bearing an oxadiazole ring in the scaffold. Our studies demonstrate that SLP120701, a SphK2-selective inhibitor (Ki = 1 μM), decreases S1P levels in histiocytic lymphoma (U937) cells. Surprisingly, homologation with a single methylene unit between the oxadiazole and heterocyclic ring afforded a SphK1-selective inhibitor in SLP7111228 (Ki = 48 nM), which also decreased S1P levels in cultured U937 cells. In vivo application of both compounds, however, resulted in contrasting effect in circulating levels of S1P. Administration of SLP7111228 depressed blood S1P levels while SLP120701 increased levels of S1P. Taken together, these compounds provide an in vivo chemical toolkit to interrogate the effect of increasing or decreasing S1P levels and whether such a maneuver can have implications in disease states.
A direct C-H bond phosphonation of quinoxalin-2(1H)-ones with H-phosphonates, H-phosphinates or H-phosphine oxides has been developed. A wide variety of heteroaryl phosphonates were obtained in up to 92% yield for 20 examples under transition-metal-free conditions. This protocol tolerates a broad scope of substrates and features practicality, high efficiency, environmental friendliness and atom economy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.