Amplification and/or activation of the c-Myc protooncogene is one of the leading genetic events along hepatocarcinogenesis. The oncogenic potential of c-Myc has been proven experimentally by the finding that its overexpression in the mouse liver triggers tumor formation. However, the molecular mechanism whereby c-Myc exerts its oncogenic activity in the liver remains poorly understood. Here, we demonstrate that the mammalian target of rapamycin complex 1 (mTORC1) cascade is activated and necessary for c-Myc dependent hepatocarcinogenesis. Specifically, we found that ablation of Raptor, the unique member of the mTORC1 complex, strongly inhibits c-Myc liver tumor formation. Also, p70S6K/ribosomal protein S6 (RPS6) and eukaryotic translation initiation factor 4E-binding protein 1/eukaryotic translation initiation factor 4E (4EBP1/eIF4E) signaling cascades downstream of mTORC1 are required for c-Myc-driven tumorigenesis. Intriguingly, microarray expression analysis revealed the upregulation of multiple amino acid transporters, including SLC1A5 and SLC7A6, leading to robust uptake of amino acids, including glutamine, into c-Myc tumor cells. Subsequent functional studies showed that amino acids are critical for activation of mTORC1, as their inhibition suppressed mTORC1 in c-Myc tumor cells. In human HCC specimens, levels of c-Myc directly correlate with those of mTORC1 activation as well as of SLC1A5 and SLC7A6. Conclusion Our current study indicates that an intact mTORC1 axis is required for c-Myc-driven hepatocarcinogenesis. Thus, targeting mTOR pathway or amino acid transporters may be an effective and novel therapeutic option for the treatment of HCC with activated c-Myc signaling.
This paper describes the fabrication of two different 3D mesoporous TiO2 microspheres via one-step solvothermal process without templates using different titanium sources. The resulting materials were characterized by XRD, FESEM, TEM, and nitrogen adsorption techniques. Their photodegradation of bisphenol A [2,2-bis(4-hydroxyphenyl)propane, BPA] in aqueous suspension was investigated under UV irradiation. The experimental results revealed that the photocatalytic effect of the two 3D mesoporous TiO2 microspheres was superior to the commercial P25 TiO2, and as-prepared samples as catalysts demonstrated that the smaller pore size it is, the higher the effective degradation for BPA is. Particular attention was paid to the identification of intermediates and analysis of photocatalytic degradation mechanism of BPA by HPLC-MS and HPLC-MS-MS. Five main intermediates were formed during photocatalytic degradation, and their evolution was discussed. On the basis of the evidence of oxidative intermediate formation, a detailed degradation pathway of BPA degradation by two mesoporous TiO2 microspheres photocatalysts are proposed.
Sunlight-induced photodegradation of rhodamine B over Ag3PO4 has been observed. Nanosized Ag3PO4 was synthesized by a facile ion-exchange route. X-ray powder diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, the Brunauer–Emmett–Teller surface area, UV–vis diffuse reflectance spectroscopy and photoluminescence spectra were employed to investigate the phase structure, morphology and optical property of the Ag3PO4 product. Nearly 100% of rhodamine B was degraded after a very short irradiation time using simulated sunlight in Ag3PO4 suspension, and the total organic carbon measurement revealed that a high degree of mineralization was achieved in the present photocatalytic system. Ag3PO4 catalyst has an excellent photocatalytic performance due to the high separation efficiency of electron and hole pairs. In the neutral pH solution, Ag3PO4 catalyst exhibited the best photoactivity under simulated sunlight. The photoinduced holes were considered to be the dominant active species in the photodegradation process.
Two-dimensional (2D) nanosheets directly grew into three-dimensional (3D) microspheres through a one-step solvothermal route under controlled conditions; during this procedure the decomposition of hexamethylenetetramine at temperatures higher than 120 °C provided OH− at the rate of good diffusion, and surfactants were used as templates to provide the growth sites and control the crystalline growth direction. By means of the Ostwald ripening process, precursor microspheres formed with narrowly distributed diameters, and then NiO 3D microspheres were obtained with further calcination at 300 °C for 2 h. NiO microspheres presented a high initial discharge capacity as anode materials in Li ion batteries, but degraded quickly during subsequent cycles, and further improvement in cyclic stability is still needed for practical application in Li ion batteries.
Chrysanthemum-analogous Bi 2 O 3 -Bi 2 WO 6 composite microspheres, assembled by nanosheets, were synthesized through a one-step hydrothermal route with the aid of surfactant templates. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were employed to clarify the structure and morphology of the Bi 2 O 3 -Bi 2 WO 6 microspheres. Nitrogen adsorption and desorption isotherms were conducted to examine the specific surface area and the pore nature of the as-prepared microspheres. The photocatalytic activity of the Bi 2 O 3 -Bi 2 WO 6 composite microspheres was evaluated by using rhodamine B as a model contaminant, and over 99% of rhodamine B was degraded within 10 min under the exposure of sunlight. The Bi 2 O 3 -Bi 2 WO 6 composite microspheres presented enhanced photocatalytic performances compared with separate Bi 2 O 3 , Bi 2 WO 6 , and conventional P25.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.