Exenatide has a better hepatic-protective effect than intensive insulin therapy and perhaps represents a unique option for adjunctive therapy for patients with obesity, non-alcoholic fatty liver disease with elevated liver enzymes and T2D.
Epigallocatechin-3-gallate (EGCG), the major component of green tea polyphenol, has potent efficiency to prevent the growth of a variety of cancer cells. As a novel anticancer agent for treatment of cancers, EGCG is promising and the mechanism has not been fully understood. Laryngeal squamous cell carcinoma (LSCC) is one common tumor in head and neck cancers. In the present study, we assess the effects of EGCG on LSCC cell line Hep-2, and their possible involvement in EGCG-induced apoptosis. The result showed that treatment of Hep-2 cells with EGCG decreased the cell viability, inhibited the growth and proliferation, induced apoptosis and increased the activity of caspase-3 in a dose-dependent manner. Furthermore, we found that EGCG-treatment repressed telomerase activity effectively in a concentration-dependent manner. The combined results show that EGCG induced apoptosis in Hep-2 cells via inhibiting the telomerase activity.
The decreased expression of egr-1 might play a role in the dysregulation of normal growth in the cancerous process of HCC and EC. Egr-1 gene of transfected HHCC and ECa109 cells showed obvious suppression of the cell growth and malignant phenotypes, but no suppression in SMMC7721 (HCC cell line) cells.
Objective This study is aimed at investigating whether exenatide (Exe) delays the progression of nonalcoholic fatty liver disease (NAFLD) in C57BL/6 mice by targeting the NLRP3 inflammasome through the autophagy/mitophagy pathway. Methods Thirty male C57BL/6 mice were randomly divided into three groups: control group (n = 10), model group (n = 10), and Exe (exenatide) group (n = 10). Mouse models of NAFLD and diabetes were established using a high-fat diet and streptozocin. Results The levels of fasting blood glucose (FBG), total cholesterol (TC), and triglyceride (TG) in the serum were significantly reduced after Exe treatment. The body weight, liver weight/body weight, and number of lipid droplets in the liver significantly decreased in Exe-treated mice. Treatment with Exe markedly reduced the levels of liver lipids, malondialdehyde (MDA), and alanine aminotransferase (ALT) in serum and livers. The number of autophagosomes increased significantly in the Exe group. The expression of LC3A/B-II/I, Beclin-1, Parkin, and BNIP3L increased significantly, whereas NLRP3 and IL-1β proteins were suppressed after Exe treatment. Conclusion We successfully established a mouse model of NAFLD and diabetes. Exe may reduce oxidative stress injury and inhibit the NLRP3 inflammasome by enhancing the autophagy/mitophagy pathway in liver, which has a protective effect on the liver in NAFLD and diabetes in C57BL/6 mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.