The complex flower organization of orchids offers an opportunity to discover new variant genes and different levels of complexity in the morphogenesis of flowers. In this study, four B-class Phalaenopsis DEF-like MADS-box genes were identified and characterized, including PeMADS2, PeMADS3, PeMADS4 and PeMADS5. Differential expression profiles of these genes were detected in the floral organs of P. equestris, suggesting distinctive roles in the floral morphogenesis of orchids. Furthermore, expressions of these genes were varied to different extents in the peloric mutants with lip-like petals. Expression of PeMADS4 was in lips and columns of wild type, and it extended to the lip-like petals in the peloric mutant. Expression of PeMADS5 was mainly in petals and to a lesser extent in columns in the wild type, whereas it was completely eliminated in the peloric mutant. Disruption of the PeMADS5 promoter region of the peloric mutant was detected at nucleotide +312 relative to the upstream of translational start codon, suggesting that a DNA rearrangement has occurred in the peloric mutant. Genomic structure analysis of the PeMADS5 showed that the exon length was conserved in exons 1-6, similar to DEF-like genes of other plants. Collectively, this is the first report that four DEF-like MADS genes were identified in a single monocotyledonous species and that they may play distinctive morphogenetic roles in the floral development of an orchid.
Orchid (Orchidaceae) is one of the largest families in angiosperms and presents exceptional diversity in lifestyle. Their unique reproductive characteristics of orchid are attracted by scientist for centuries. One of the synapomorphies of orchid plants is that their seeds do not contain endosperm. Lipids are used as major energy storage in orchid seeds. However, regulation and mobilization of lipid usage during early seedling (protocorm) stage of orchid is not understood. In this study, we compared transcriptomes from developing Phalaenopsis aphrodite protocorms grown on 1/2-strength MS medium with sucrose. The expression of P. aphrodite MALATE SYNTHASE (PaMLS), involved in the glyoxylate cycle, was significantly decreased from 4 days after incubation (DAI) to 7 DAI. On real-time RT-PCR, both P. aphrodite ISOCITRATE LYASE (PaICL) and PaMLS were down-regulated during protocorm development and suppressed by sucrose treatment. In addition, several genes encoding transcription factors regulating PaMLS expression were identified. A gene encoding homeobox transcription factor (named PaHB5) was involved in positive regulation of PaMLS. This study showed that sucrose regulates the glyoxylate cycle during orchid protocorm development in asymbiotic germination and provides new insights into the transcription factors involved in the regulation of malate synthase expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.