Background Melatonin acts as a signaling hormone and entraining agent in many organisms. We studied the spatiotemporal regulation and influence of light (photoperiods, intensities, and spectral qualities) on melatonin concentration in the medicinal herb Hypericum perforatum L. Furthermore, melatonin concentrations in the leaves of eight species of the Hypericum genus were compared and analyzed using high-performance liquid chromatography. Results Melatonin concentration was found to be the highest in its flowers and leaves. The leaves exhibited a rhythmic variation in melatonin concentration of approximately 24 h under both light–dark entrained (Zeitgeber time) and constant light [circadian time (CT)] conditions, with melatonin concentration peaking at approximately CT6 in the middle of the subjective day. Melatonin concentration was influenced significantly by not only photoperiods but also applied light’s wavelength and intensity. It was approximately six times higher under long-day conditions (18-h light:6-h dark) than under short-day photoperiods (10-h light:14-h dark) and was the highest (131 μg/g fresh weight [FW]) under treatment with blue light at an intensity of 45 µmol·m2/s of photons. The melatonin concentration of the two examined Hypericum spp., namely H. kouytchense Lev. and H. coris L., were approximately twice that of H. perforatum L. Conclusion Our findings provide first insights on melatonin-related functions and mechanisms in the circadian system of H. perforatum and useful resources for further melatonin-oriented research and possible applications in agriculture and pharmaceutical industries.
There are several benefits of using the supercritical fluid microcellular injection moulding process. The part weight, melt temperature, viscosity, moulding pressure, shrink/warpage, and cooling/cycle time are all significantly reduced. The purpose of this study is to investigate the rheological behaviour of PS melt dissolved SCF of nitrogen during Microcellular Injection Moulding process applied with Gas Counter Pressure (GCP) technology. The application of gas into the mould cavity prior to the melt filling provides a counter force against the melt front advancement, restricting the foaming process during the melt filling stage. A slit cavity is designed to measure the pressure drop of polystyrene mixed with 0.4wt% supercritical nitrogen fluid under different mould temperatures (185°C, 195°C, and 205°C), injection speeds (5, 10, and 15 mm/s) as well as counter pressures (0, 150, 300 bars). It was found that melt viscosity is reduced by up to 30% when GCP is increased from 50 to 150 bar as compared to conventional injection moulding. The non-nucleation mixture melt obtained by using a GCP of 300 bar has 32~49% lower viscosity. In addition, the glass transition temperature, Tg, was found to be reduced from 96 °C to 50 °C when the applied GCP is 300 bar.
Climate change is an important global environmental threat. Agriculture aggravates climate change by increasing greenhouse gas (GHG) emissions, and in response, climate change reduces agricultural productivity. Consequently, the modern agricultural development mode has progressively transformed into a kind of sustainable development mode. This study aimed to determine the environmental impact and carbon footprint of Dongshan tea from Yilan County. Environmental impact was assessed with use of SimaPro version 8.0.2 and IMPACT2002+. Results showed that climate change has the largest impact upon it in general, followed by human health, natural resources, and ecosystem quality. Furthermore, with use of the IPCC 2007 100a method for carbon footprint of products (CFP), conventional tea was found to have a CFP of 7.035 kgCO2-e, and its main contributors are the raw material (35.15%) and consumer use (45.58%) phases. From this case study, we found that the hotspots of the life cycle of environmental impact of Taiwanese tea mainly come from fertilizer input during the raw material phase, electricity use during manufacturing, and electricity use during water boiling in the consumer use phase (which contributes the largest impact). We propose the ways for consumers to use of highly efficient boiling water facilities and heating preservation, and the government must market the use of organic fertilizers in the national policy subsidies, and farmers have to prudent use of fertilizers and promote the use of local raw fertilizers, and engagement in direct sales for reducing the environmental impacts and costs of agricultural products and thus advancing sustainable agriculture development.
Precision injection molding of thin-wall parts has become an important concern in 3C (computer, communication, and consumer electronics) plastics industry. Previous studies in precision injection molding control focused on the injection screw, the hydraulic system control and the associated operations. In the present study, the influence of relevant parameters, including injection speed, melt temperature, mold temperature, filling-packing switchover, and packing pressure, on the mold plate separation under different clamping pressures was investigated as part of precision molding control. A two-cavity tensile test specimen mold equipped with four linear variable displacement transducers (LVDTs) on mold exteriors and across the parting surface was used for experiments. A PC-based monitoring system was also built to detect the mold separation signals. Mold separation can also be identified from part weight variation and exhibits relevant correspondence with part weight. It was found that because of the high injection speed required for thin-wall molding, mold separation is not negligible. In all situations, mold separation decreases with increasing clamping pressure. As melt temperature and mold temperature increase, mold separation increases, resulting in an increase of part weight. Similarly, when packing pressure and injection speed increase, mold separation also increases. Earlier switchover from filling to packing can decrease mold separation as well as part weight. Among all parameters, packing pressure
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.