Microcellular foam injection molding provides many advantages over conventional foams and their unfoamed counterparts, but its applications are limited by visible surface quality problems such as silver streaks and swirl
MICROCELLULAR INJECTION MOLDED PARTSmarks. In this study, we propose a variable mold temperature method to improve the surface quality of molded parts. Electromagnetic induction heating is used in combination with water cooling to achieve rapid mold surface temperature control during the microcellular foam injection molding process. The effect of processing parameters, such as mold temperature, melt temperature, and injection velocity on the part surface quality, was investigated using surface roughness measurements and visual inspection of the molded parts. The results show that using induction heating to increase the mold surface temperature from 100• C to 160• C can decrease surface roughness of polycarbonate moldings from 25 μm to 6.5 μm. It was also found that the flow marks formed by gas bubbles on the part surface can be removed completely at a mold temperature of 160• C. Further increases in the mold temperature show slight improvements in the surface roughness up to 180• C, at which point the surface roughness starts to level off at 5 μm. This surface roughness value reflects an 80% improvement without a significant increase in cycle time over parts molded at a mold temperature of 60• C using water heating. Higher melt temperature and faster injection speed will also improve the surface quality of microcellular injection molded parts but not as significantly. The usefulness of a variable mold temperature in improving part surface quality during microcellular foam injection molding has been successfully demonstrated.
The purpose of this study is to establish the Gas Counter Pressure (GCP) technology in combined with microcellular injection molding process. The application of gas into the mold cavity during the melt injection period provides a counter force against the melt front advancement, restricting the foaming process during the melt filling stage. Various gas counter pressures from 0 bar up to 300 bar and gas holding times of 0 to 10 s after filling completion were employed for investigating their relevant effect. It was found that when gas counter pressure is greater than 100 bar, foaming does not appear in the skin layer if no holding time is applied after melt-filling. As gas counter pressure increases, thickness of the solid skin layer without foaming also increases. Employment of holding time after melt-filling also assists foaming restriction in the melt core area. If a holding time of 10 s is applied combined with a counter pressure greater than 100 bar, foaming is completely restricted resulting in a transparent PS sample part. The part surface of those subjected to foaming-restriction in the skin layer also appears to be smooth and glossy. For the black PS parts molded via microcellular injection combined with gas counter pressure, it appears the same gloss quality as that achieved by conventional injection molding.
There are several benefits of using the supercritical fluid microcellular injection moulding process. The part weight, melt temperature, viscosity, moulding pressure, shrink/warpage, and cooling/cycle time are all significantly reduced. The purpose of this study is to investigate the rheological behaviour of PS melt dissolved SCF of nitrogen during Microcellular Injection Moulding process applied with Gas Counter Pressure (GCP) technology. The application of gas into the mould cavity prior to the melt filling provides a counter force against the melt front advancement, restricting the foaming process during the melt filling stage. A slit cavity is designed to measure the pressure drop of polystyrene mixed with 0.4wt% supercritical nitrogen fluid under different mould temperatures (185°C, 195°C, and 205°C), injection speeds (5, 10, and 15 mm/s) as well as counter pressures (0, 150, 300 bars). It was found that melt viscosity is reduced by up to 30% when GCP is increased from 50 to 150 bar as compared to conventional injection moulding. The non-nucleation mixture melt obtained by using a GCP of 300 bar has 32~49% lower viscosity. In addition, the glass transition temperature, Tg, was found to be reduced from 96 °C to 50 °C when the applied GCP is 300 bar.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.