In this study, the mesoporous anatase TiO2, TBF4, is synthesized by sol–gel polymerization using 1-butyl-3-methylimidazolium tetrafluoroborate [BMIM][BF4] as the template. The 450 °C-calcined TBF4 is found maintaining a mesoporous structure with a morphology that benefits dye adsorption and electrolyte diffusion. A series of dye-sensitized electrodes are prepared with a combination of the as-prepared TBF4 and P25, a commercial TiO2. It is found that the short-circuit photocurrent (J
sc) and open-circuit photovoltage (V
oc) of the TBF4-containing electrodes are remarkably increased with the content of TBF4. The improvement is ascribed to an increase in the amount of dye molecules adsorbed and prolongation of the electron lifetimes (τeff). The highest light-to-electricity conversion efficiency (η) of the dye-sensitized solar cell is obtained from that prepared with the pure TBF4 electrode and is about 60% higher than that prepared with the pure P25 electrode under the same condition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.