We present electrical data to show that, after nitrogen implantation, GaAs films become resistive after high-temperature annealing. The activation energies of the resistance are determined to be 0.34, 0.59, and 0.71 eV after annealing at 500, 700, and 950 °C, respectively. The increase in the activation energy with increasing annealing temperature can be explained by the results of traps detected in deep-level transient spectroscopy, where two traps at 0.32 and 0.70 eV are observed in the samples after annealing. The intensity of the trap at 0.32 eV is found to reduce by annealing. By comparing to the result of the x-ray diffraction, we suspect that this trap is related to the lattice-expansion defects. The trap at 0.70 eV is observed only in samples annealed at high temperatures. Since this trap contributes to the high-resistive effect, we believe that it is associated with the nitrogen ions.
The electric transport I–V characteristics of a tungsten filament immersed in superfluid helium are experimentally studied. The forward sweep I–V characteristics show an abrupt jump from the linear ohmic regime (C state) to the high-resistance non-ohmic regime (H state). In the H state, the filament is covered with a He gas bubble. In the C state, there is no gas bubble, that is, liquid He directly touches the filament surface. The transitions between these two states exhibit a well-developed hysteresis and bistability. The transition from the H state to the C state occurs at the equilibrium gas–liquid phase transition point, as reported by Date et al. (J Phys Soc Jpn 35(4):1190, 1973), whereas the C-to-H-state transition occurs in the superheat region.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.