Objectives The correlations between long non‐coding RNAs (lncRNAs) and diverse mammal diseases have been clarified by many researches, but the cognition about bovine mastitis‐related lncRNAs remains limited. This study aimed to investigate the potential role of lncRNA X‐inactive specific transcript (XIST) in the inflammatory response of bovine mammary epithelial cells. Materials and methods Two inflammatory bovine mammary alveolar cell‐T (MAC‐T) models were established by infecting the cells with Escherichia coli (E. coli) and Staphylococcus aureus ( S. aureus ). The expressions of pro‐inflammatory cytokines were measured, and the proliferation, viability and apoptosis of the inflammatory cells were evaluated after XIST was knocked down by an siRNA. The relationship among XIST, NF‐κB pathway and NOD‐like receptor protein 3 (NLRP3) inflammasome was investigated using an inhibitor of NF‐κB signal pathway. Results The expression of XIST was abnormally increased in bovine mastitic tissues and inflammatory MAC‐T cells. Silencing of XIST significantly increased the expression of E. coli or S. aureus ‐induced pro‐inflammatory cytokines. Additionally, knockdown of XIST could inhibit cell proliferation, suppress cell viability and promote cell apoptosis under inflammatory conditions. Furthermore, XIST inhibited E. coli or S. aureus ‐induced NF‐κB phosphorylation and the production of NLRP3 inflammasome. Conclusions The expression of XIST was promoted by activated NF‐κB pathway and, in turn, XIST generated a negative feedback loop to regulate NF‐κB/NLRP3 inflammasome pathway for mediating the process of inflammation.
These results provide evidence that remote post-conditioning, which was initiated after ischemia and before reperfusion, protects against brain injury in experimental ischemic stroke.
Background/Aims: Transforming growth factor-β1 (TGF-β1) plays a crucial role in chronic inflammation in various tissues, and is related to inflammation-caused organ fibrogenesis associated with the epithelial-mesenchymal transition (EMT) and the deposition of the extracellular matrix (ECM). However, the effect of TGF-β1 on bovine mammary epithelial cells (BMECs) with mastitis, and its mechanism, remain unknown. Methods: We analyzed the level of TGF-β1 in inflamed mammary tissues and cells using western blotting. BMECs were treated with TGF-β1, and EMT-related gene and protein expression changes were evaluated using quantitative real-time polymerase chain reaction (qPCR), western blotting, and immunofluorescence. We also inhibited the TGF/Smad signaling pathway using a receptor inhibitor, and analyzed EMT-related protein expression by western blotting. In addition, we injected TGF-β1 into mice mammary glands to investigate whether it can cause mammary fibrosis in vivo. Results: The TGF-β1 level was up-regulated in mammary tissues with mastitis and in inducible inflammatory BMECs. TGF-β1 treatment activated the TGF/ Smad signaling pathway in BMECs during their transition to the EMT phenotype, as indicated by morphological changes from a cobblestone-like shape to a spindle-like one. TGF-β1 treatment also up-regulated the expression of α-smooth muscle actin, vimentin, and collagen I, albumin, and down-regulated the expression of E-cadherin both in mRNA level and protein level. Furthermore, TGF-β1 enhanced the gene expressions of MMP2, MMP7, and fibronectin in BMECs. TGF-β1 injection induced mice mammary infection and fibrosis. Conclusion: These findings suggested that aberrant up-regulation of TGF-β1 in bovine mastitic mammary glands might play an important role in bovine mammary fibrosis caused by unresolved inflammation.
poses a significant global health threat. MicroRNAs play an important role in regulating host anti-mycobacterial defense; however, their role in apoptosis-mediated mycobacterial elimination and inflammatory response remains unclear. In this study, we explored the role of microRNA-27b (miR-27b) in murine macrophage responses to infection. We uncovered that the TLR-2/MyD88/NF-κB signaling pathway induced the expression of miR-27b and miR-27b suppressed the production of proinflammatory factors and the activity of NF-κB, thereby avoiding an excessive inflammation during infection. Luciferase reporter assay and Western blotting showed that miR-27b directly targeted Bcl-2-associated athanogene 2 (Bag2) in macrophages. Overexpression of Bag2 reversed miR-27b-mediated inhibition of the production of proinflammatory factors. In addition, miR-27b increased p53-dependent cell apoptosis and the production of reactive oxygen species and decreased the bacterial burden. We also showed that Bag2 interacts with p53 and negatively regulates its activity, thereby controlling cell apoptosis and facilitating bacterial survival. In summary, we revealed a novel role of the miR-27b/Bag2 axis in the regulation of inflammatory response and apoptosis and provide a potential molecular host defense mechanism against mycobacteria.
ResearchCite this article: Liu X et al. Mastitis costs the dairy industry billions of dollars annually and is the most consequential disease of dairy cattle. Transgenic cows secreting an antimicrobial peptide demonstrated resistance to mastitis. The combination of somatic cell gene targeting and nuclear transfer provides a powerful method to produce transgenic animals. Recent studies found that a precisely placed doublestrand break induced by engineered zinc-finger nucleases (ZFNs) stimulated the integration of exogenous DNA stretches into a pre-determined genomic location, resulting in high-efficiency site-specific gene addition. Here, we used ZFNs to target human lysozyme (hLYZ) gene to bovine b-casein locus, resulting in hLYZ knock-in of approximately 1% of ZFN-treated bovine fetal fibroblasts (BFFs). Gene-targeted fibroblast cell clones were screened by junction PCR amplification and Southern blot analysis. Gene-targeted BFFs were used in somatic cell nuclear transfer. In vitro assays demonstrated that the milk secreted by transgenic cows had the ability to kill Staphylococcus aureus. We report the production of cloned cows carrying human lysozyme gene knock-in b-casein locus using ZFNs. Our findings open a unique avenue for the creation of transgenic cows from genetic engineering by providing a viable tool for enhancing resistance to disease and improving the health and welfare of livestock.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.