The purpose of this study is to provide an energy verification method for the nozzle of the SC200 proton therapy facility to ensure safe redundancy of treatment. This paper first introduces the composition of the energy selection system of the SC200 proton therapy facility. Secondly, according to IEC60601 standard, the energy verification requirement that correspond to 1 mm error in water is presented. The allowable difference between the measured magnetic field and the reference are calculated based on the energy verification requirements to select the field resolution of the Hall probe. To ensure accuracy and stability, two Hall probes are mounted on the dipole to monitor the magnetic field strength to verify the proton beam energy in real time. In addition, the test results of the residual field of the dipole show that the probe system meets the accuracy requirements of energy verification. Furthermore, the maximum width of the slit of the energy selection system in accordance with the IEC standard at the corresponding energy is calculated and compared with the actual position of the movable slit to verify the momentum divergence of the proton beam. Finally, we present an energy verification method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.