Abstract-This paper introduces a turbo decoder that utilizes multiple soft-in/soft-out (SISO) decoders to decode one codeword. In addition, each SISO decoder is modified to allow simultaneous execution over multiple successive trellis stages. The design issues related to the architecture with parallel high-radix SISO decoders are discussed. First, a contention-free interleaver for the hybrid parallelism is presented to overcome the complicated collision problem as well as reduce interconnection network complexity. Second, two techniques for the high-speed add-compare-select (ACS) circuits are given to lessen area overhead of the SISO decoder. Third, a modification of the processing schedule is made for higher operating efficiency. Two designs with parallel architecture have been implemented. The first design with 32 SISO decoders, each of which processes 2 symbols per cycle, has 160 Mb/s and 0.22 nJ/b/iter after measurement. The second design uses 16 SISO decoders to deal with 4 symbols per cycle and achieves 100% efficiency, leading to 1000 Mb/s and 0.15 nJ/b/iter in post-layout simulation.
The fano-resonance biosensor is formed through the phase variation of microcavity- resonator-coupled Mach-Zehnder interferometers. After windowed Fourier transform, the biological phase sensitivity could be effectively enhanced and theoretically demonstrate the limit of detection as 10-7 refractive-index-units.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.