van der Waals (vdW) heterostructures are promising building blocks for future ultrathin electronics. Fabricating vdW heterostructures by stamping monolayers at arbitrary angles provides an additional range of flexibility to tailor the resulting properties than could be expected by direct growth. Here, we report fabrication and comprehensive characterizations of WSe2/WS2 bilayer heterojunctions with various twist angles that were synthesized by artificially stacking monolayers of WS2 and WSe2 grown by chemical vapor deposition. After annealing the WSe2/WS2 bilayers, Raman spectroscopy reveals interlayer coupling with the appearance of a mode at 309.4 cm(-1) that is sensitive to the number of WSe2 layers. This interlayer coupling is associated with substantial quenching of the intralayer photoluminescence. In addition, microabsorption spectroscopy of WSe2/WS2 bilayers revealed spectral broadening and shifts as well as a net ∼10% enhancement in integrated absorption strength across the visible spectrum with respect to the sum of the individual monolayer spectra. The observed broadening of the WSe2 A exciton absorption band in the bilayers suggests fast charge separation between the layers, which was supported by direct femtosecond pump-probe spectroscopy. Density functional calculations of the band structures of the bilayers at different twist angles and interlayer distances found robust type II heterojunctions at all twist angles, and predicted variations in band gap for particular atomistic arrangements. Although interlayer excitons were indicated using femtosecond pump-probe spectroscopy, photoluminescence and absorption spectroscopies did not show any evidence of them, suggesting that the interlayer exciton transition is very weak. However, the interlayer coupling for the WSe2/WS2 bilayer heterojunctions indicated by substantial PL quenching, enhanced absorption, and rapid charge transfer was found to be insensitive to the relative twist angle, indicating that stamping provides a robust approach to realize reliable optoelectronics.
We present the Raman scattering results on layered 2D semiconducting ferromagnetic compound CrSiTe3. Four Raman active modes, predicted by symmetry, have been observed and assigned. The experimental results are supported by DFT calculations. The self-energies of the A 3 g and the E 3 g symmetry modes exhibit unconventional temperature evolution around 180 K. In addition, the doubly degenerate E 3 g mode shows clear change of asymmetry in the same temperature region. The observed behaviour is consistent with the presence of the previously reported short-range magnetic order and the strong spin-phonon coupling.
The formation of semiconductor heterojunctions and their high-density integration are foundations of modern electronics and optoelectronics. To enable two-dimensional crystalline semiconductors as building blocks in next-generation electronics, developing methods to deterministically form lateral heterojunctions is crucial. Here we demonstrate an approach for the formation of lithographically patterned arrays of lateral semiconducting heterojunctions within a single two-dimensional crystal. Electron beam lithography is used to pattern MoSe2 monolayer crystals with SiO2, and the exposed locations are selectively and totally converted to MoS2 using pulsed laser vaporization of sulfur to form MoSe2/MoS2 heterojunctions in predefined patterns. The junctions and conversion process are studied by Raman and photoluminescence spectroscopy, atomically resolved scanning transmission electron microscopy and device characterization. This demonstration of lateral heterojunction arrays within a monolayer crystal is an essential step for the integration of two-dimensional semiconductor building blocks with different electronic and optoelectronic properties for high-density, ultrathin devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.